ON THE FIRST NONTRIVIAL EIGENVALUE OF THE ∞LAPLACIAN WITH NEUMANN BOUNDARY CONDITIONS

被引:0
|
作者
Rossi, J. D. [1 ,2 ]
Saintier, N. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150, RA-1613 Los Polvorines, Pcia De Bs As, Argentina
来源
HOUSTON JOURNAL OF MATHEMATICS | 2016年 / 42卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the limit as p -> infinity of the first non-zero eigenvalue gimel(p) of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U subset of R-n. We prove that gimel(infinity) := lim(p) ->+infinity gimel(1/p)(p) = 2/diam(U), where diams (U) denotes the diameter of U with respect to the geodesic distance in U. We can think of gimel(infinity) as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of gimel(infinity) as a function of the domain U proving that under a smooth perturbation U-t of U by diffeomorphisms close to the identity there holds that gimel(infinity)(U-t) = (U)+ O(t). Although gimel(infinity)(U-t) is in general not differentiable at t = 0, we show that in some cases it is so with an explicit formula for the derivative.
引用
收藏
页码:613 / 635
页数:23
相关论文
共 50 条