CONET: copy number event tree model of evolutionary tumor history for single-cell data

被引:14
|
作者
Markowska, Magda [1 ,2 ]
Cakala, Tomasz [1 ]
Miasojedow, Blazej [1 ]
Aybey, Bogac [3 ]
Juraeva, Dilafruz [3 ]
Mazur, Johanna [3 ]
Ross, Edith [3 ]
Staub, Eike [3 ]
Szczurek, Ewa [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, Warsaw, Poland
[2] Med Univ Warsaw, Postgrad Sch Mol Med, Ks Trojdena 2a St, Warsaw, Poland
[3] Merck Healthcare KGaA, Translat Med, Oncol Bioinformat, Frankfurter Str 250, D-64293 Darmstadt, Germany
关键词
Copy number alterations; Tumor evolution; Single-cell sequencing; Probabilistic model; MCMC sampling; CIRCULAR BINARY SEGMENTATION; WHOLE-GENOME; CANCER; DNA; INFERENCE; PHYLOGENY; POPULATIONS;
D O I
10.1186/s13059-022-02693-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Copy number alterations constitute important phenomena in tumor evolution. Whole genome single-cell sequencing gives insight into copy number profiles of individual cells, but is highly noisy. Here, we propose CONET, a probabilistic model for joint inference of the evolutionary tree on copy number events and copy number calling. CONET employs an efficient, regularized MCMC procedure to search the space of possible model structures and parameters. We introduce a range of model priors and penalties for efficient regularization. CONET reveals copy number evolution in two breast cancer samples, and outperforms other methods in tree reconstruction, breakpoint identification and copy number calling.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Reconstructing evolutionary models of tumor progression from single-cell heterogeneity data
    Chowdhury, Salim A.
    Gertz, E. Michael
    Wangsa, Darawalee
    Heselmeyer-Haddad, Kerstin
    Ried, Thomas
    Schaeffer, Alejandro
    Schwartz, Russell
    CANCER RESEARCH, 2015, 75
  • [22] Inferring evolutionary models of tumor progression from single-cell heterogeneity data
    Chowdhury, Salim A.
    Subramanian, Ayshwarya
    Schaeffer, Alejandro A.
    Shackney, Stanley E.
    Wangsa, Darawalee
    Heselmeyer-Haddad, Kerstin
    Ried, Thomas
    Schwartz, Russell
    CANCER RESEARCH, 2014, 74 (19)
  • [23] Methods for copy number aberration detection from single-cell DNA-sequencing data
    Mallory, Xian F.
    Edrisi, Mohammadamin
    Navin, Nicholas
    Nakhleh, Luay
    GENOME BIOLOGY, 2020, 21 (01)
  • [24] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Ramakrishnan, Akshaya
    Symeonidi, Aikaterini
    Hanel, Patrick
    Schmid, Katharina T.
    Richter, Maria L.
    Schubert, Michael
    Colome-Tatche, Maria
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations
    Milite, Salvatore
    Bergamin, Riccardo
    Patruno, Lucrezia
    Calonaci, Nicola
    Caravagna, Giulio
    BIOINFORMATICS, 2022, 38 (09) : 2512 - 2518
  • [26] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [27] Methods for copy number aberration detection from single-cell DNA-sequencing data
    Xian F. Mallory
    Mohammadamin Edrisi
    Nicholas Navin
    Luay Nakhleh
    Genome Biology, 21
  • [28] Detecting copy-number alterations from single-cell chromatin sequencing data by AtaCNA
    Wang, Xiaochen
    Jin, Zijie
    Shi, Yang
    Xi, Ruibin
    CELL REPORTS METHODS, 2025, 5 (01):
  • [29] SCONCE2: jointly inferring single cell copy number profiles and tumor evolutionary distances
    Hui, Sandra
    Nielsen, Rasmus
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [30] SCONCE2: jointly inferring single cell copy number profiles and tumor evolutionary distances
    Sandra Hui
    Rasmus Nielsen
    BMC Bioinformatics, 23