A priori error estimates for a coupled finite element method and mixed finite element method for a fluid-solid interaction problem

被引:2
|
作者
Feng, XB [1 ]
Xie, ZH
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
acoustic and elastic waves; fluid-solid interaction; absorbing boundary condition; finite element and mixed finite element methods;
D O I
10.1093/imanum/24.4.671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a heterogeneous finite element method for a fluid-solid interaction problem. The method, which combines a standard finite element discretization in the fluid region and a mixed finite element discretization in the solid region, allows the use of different meshes in fluid and solid regions. Both semi-discrete and fully discrete approximations are formulated and analysed. Optimal order a priori error estimates in the energy norm are shown. The main difficulty in the analysis is caused by the two interface conditions which describe the interaction between the fluid and the solid. This is overcome by explicitly building one of the interface conditions into the finite element spaces. Iterative substructuring algorithms are also proposed for effectively solving the discrete finite element equations.
引用
收藏
页码:671 / 698
页数:28
相关论文
共 50 条
  • [31] A priori error estimates for a mixed finite element discretization of the Richards’ equation
    Eckhard Schneid
    Peter Knabner
    Florin Radu
    [J]. Numerische Mathematik, 2004, 98 : 353 - 370
  • [32] Analysis and finite element methods for a fluid-solid interaction problem in one dimension
    Makridakis, C
    Ihlenburg, F
    Babuska, I
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08): : 1119 - 1141
  • [33] A fluid-solid finite element method for the analysis of reactor safety problems
    Mitra, Santanu
    Kumar, Ashutosh
    Sinhamahapatra, K. P.
    [J]. ANNALS OF NUCLEAR ENERGY, 2006, 33 (08) : 692 - 699
  • [34] A fluid-solid finite element method for the analysis of reactor safety problems
    Mitra, Santanu
    Kumar, Ashutosh
    Sinhamahapatra, K. P.
    [J]. Proceedings of the ASME Pressure Vessels and Piping Conference 2005, Vol 2, 2005, 2 : 465 - 471
  • [35] A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM
    Kiniger, Bernhard
    Vexler, Boris
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1733 - 1763
  • [36] A Posteriori error estimates for the mixed finite element method with lagrange multipliers
    Gatica, GN
    Maischak, M
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (03) : 421 - 450
  • [37] Some Error Estimates for the Finite Volume Element Method for a Parabolic Problem
    Chatzipantelidis, Panagiotis
    Lazarov, Raytcho
    Thomee, Vidar
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (03) : 251 - 279
  • [38] Error estimates of the DtN finite element method for the exterior Helmholtz problem
    Koyama, Daisuke
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 21 - 31
  • [39] A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain, II
    Boulaajine, L.
    Farhloul, M.
    Paquet, L.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1288 - 1310
  • [40] A Priori and A Posteriori Error Estimations for the Dual Mixed Finite Element Method of the Navier-Stokes Problem
    Farhloul, M.
    Nicaise, S.
    Paquet, L.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 843 - 869