A Priori and A Posteriori Error Estimations for the Dual Mixed Finite Element Method of the Navier-Stokes Problem

被引:15
|
作者
Farhloul, M. [1 ]
Nicaise, S. [2 ,3 ]
Paquet, L. [2 ,3 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
[2] Univ Valenciennes & Hainaut Cambresis, LAMAV, F-59313 Valenciennes 9, France
[3] ISTV, CNRS, FR 2956, F-59313 Valenciennes 9, France
关键词
a posteriori error estimation; a priori error estimation; dual mixed FEM; Navier-Stokes problem; BOUSSINESQ EQUATIONS; NONLINEAR PROBLEMS; ELASTICITY; DISCRETIZATIONS;
D O I
10.1002/num.20377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with a dual mixedd formulation of the Navier-Stokes system in a polygonal domain of the plane with Dirichlet boundary conditions and its numerical approximation. The gradient tensor, a quantity of practical interest, is introduced as a new unknown. The problem is then approximated by a mixed finite element method. Quasi-optimal a priori error estimates are obtained. These a priori error estimates, an abstract nonlinear theory (similar to (Verfurth, RAIRO Model Math Anal Numer 32 (1998), 817-842)) and a posteriori estimates for the Stokes system from (Farhloul et al., Numer Funct Anal Optim 27 (2006), 831-846) lead to an a posteriori error estimate for the Navier-Stokes system. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 843-869, 2009
引用
收藏
页码:843 / 869
页数:27
相关论文
共 50 条