Frequency domain identification using non-parametric noise models

被引:1
|
作者
Mahata, K [1 ]
Pintelon, R [1 ]
Schoukens, J [1 ]
机构
[1] Univ Newcastle, Ctr Complex Dynam Syst & Control, Newcastle, NSW 2308, Australia
关键词
D O I
10.1109/CDC.2004.1428772
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fitting multidimensional parametric models in frequency domain using non-parametric noise models is considered in this paper. A non-parametric estimate of the noise statistics is obtained from a finite number of independent data sets. The estimated noise model is then substituted for the the true noise covariance matrix in the maximum likelihood loss function to obtain suboptimal parameter estimates. Goal here is to present an analysis of the resulting estimates. Sufficient conditions for consistency are derived, and an asymptotic accuracy analysis is carried out. The first and second order statistics of the cost function at the global minimum point are also explored, which can be used for model validation. The analytical findings are validated using numerical simulation results.
引用
收藏
页码:821 / 826
页数:6
相关论文
共 50 条
  • [31] Integrating Parametric and Non-parametric Models For Scene Labeling
    Shuai, Bing
    Wang, Gang
    Zuo, Zhen
    Wang, Bing
    Zhao, Lifan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 4249 - 4258
  • [32] Non-parametric model structure identification and parametric efficiency in nonlinear state dependent parameter models
    Young, Peter C.
    2006 INTERNATIONAL SYMPOSIUM ON EVOLVING FUZZY SYSTEMS, PROCEEDINGS, 2006, : 349 - 354
  • [33] Non-parametric calibration of a time domain reflectometer
    Boets, Patrick
    Biesen, Leo Van
    Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1994, 1 : 114 - 117
  • [34] Insights on synaptic paired-pulse response using parametric and non-parametric models
    Bouteiller, Jean-Marie C.
    Hu, Eric
    Allam, Sushmita L.
    Ghaderi, Viviane
    Song, Dong
    Berger, Theodore W.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 1041 - 1044
  • [35] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [36] Non-parametric convex identification of extended generalized Prandtl-Ishlinskii models
    Hedegard, Marcus
    Wik, Torsten
    AUTOMATICA, 2014, 50 (02) : 465 - 474
  • [37] Non-parametric non-line-of-sight identification
    Gezici, S
    Kobayashi, H
    Poor, HV
    2003 IEEE 58TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS1-5, PROCEEDINGS, 2003, : 2544 - 2548
  • [38] Non-parametric Models for Non-negative Functions
    Marteau-Ferey, Ulysse
    Bach, Francis
    Rudi, Alessandro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [39] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [40] Non-parametric models for non-smooth functions
    Müller, HG
    ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, : 595 - 609