Frequency domain identification using non-parametric noise models

被引:1
|
作者
Mahata, K [1 ]
Pintelon, R [1 ]
Schoukens, J [1 ]
机构
[1] Univ Newcastle, Ctr Complex Dynam Syst & Control, Newcastle, NSW 2308, Australia
关键词
D O I
10.1109/CDC.2004.1428772
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fitting multidimensional parametric models in frequency domain using non-parametric noise models is considered in this paper. A non-parametric estimate of the noise statistics is obtained from a finite number of independent data sets. The estimated noise model is then substituted for the the true noise covariance matrix in the maximum likelihood loss function to obtain suboptimal parameter estimates. Goal here is to present an analysis of the resulting estimates. Sufficient conditions for consistency are derived, and an asymptotic accuracy analysis is carried out. The first and second order statistics of the cost function at the global minimum point are also explored, which can be used for model validation. The analytical findings are validated using numerical simulation results.
引用
收藏
页码:821 / 826
页数:6
相关论文
共 50 条
  • [21] Performance Prediction for RNA Design Using Parametric and Non-Parametric Regression Models
    Dai, Denny C.
    Wiese, Kay C.
    CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 16 - 23
  • [22] Non-Parametric Identification in Dynamic Networks
    Dankers, Arne
    Van den Hof, Paul M. J.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3487 - 3492
  • [23] Non-parametric noise models extracted from overlapping sub-records
    Barbe, Kurt
    Schoukens, Johan
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1758 - +
  • [24] LEARNING NON-PARAMETRIC MODELS OF PRONUNCIATION
    Hutchinson, Brian
    Droppo, Jasha
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4904 - 4907
  • [25] Non-parametric Mixture Models for Clustering
    Mallapragada, Pavan Kumar
    Jin, Rong
    Jain, Anil
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 334 - 343
  • [26] Experiments with Non-parametric Topic Models
    Buntine, Wray L.
    Mishra, Swapnil
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 881 - 890
  • [27] Using Linking Features in Learning Non-parametric Part Models
    Karlinsky, Leonid
    Ullman, Shimon
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 326 - 339
  • [28] Scene Parsing With Integration of Parametric and Non-Parametric Models
    Shuai, Bing
    Zuo, Zhen
    Wang, Gang
    Wang, Bing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2379 - 2391
  • [29] Non-parametric Sensor Noise Modeling and Synthesis
    Mosleh, Ali
    Zhao, Luxi
    Singh, Atin
    Han, Jaeduk
    Punnappurath, Abhijith
    Brubaker, Marcus A.
    Choe, Jihwan
    Brown, Michael S.
    COMPUTER VISION - ECCV 2024, PT XXIV, 2025, 15082 : 73 - 89
  • [30] Analysis of parametric and non-parametric option pricing models
    Luo, Qiang
    Jia, Zhaoli
    Li, Hongbo
    Wu, Yongxin
    HELIYON, 2022, 8 (11)