Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

被引:102
|
作者
Schmit, P. F. [1 ]
Knapp, P. F. [1 ]
Hansen, S. B. [1 ]
Gomez, M. R. [1 ]
Hahn, K. D. [1 ]
Sinars, D. B. [1 ]
Peterson, K. J. [1 ]
Slutz, S. A. [1 ]
Sefkow, A. B. [1 ]
Awe, T. J. [1 ]
Harding, E. [1 ]
Jennings, C. A. [1 ]
Chandler, G. A. [1 ]
Cooper, G. W. [1 ]
Cuneo, M. E. [1 ]
Geissel, M. [1 ]
Harvey-Thompson, A. J. [1 ]
Herrmann, M. C. [1 ]
Hess, M. H. [1 ]
Johns, O. [1 ]
Lamppa, D. C. [1 ]
Martin, M. R. [1 ]
McBride, R. D. [1 ]
Porter, J. L. [1 ]
Robertson, G. K. [1 ]
Rochau, G. A. [1 ]
Rovang, D. C. [1 ]
Ruiz, C. L. [1 ]
Savage, M. E. [1 ]
Smith, I. C. [1 ]
Stygar, W. A. [1 ]
Vesey, R. A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
PARTICLE STOPPING POWERS; CONFINEMENT FUSION; CYLINDRICAL GEOMETRY; IGNITION CONDITIONS; TARGET FUSION; AREAL DENSITY; ICF TARGETS; IMPLOSIONS; PLASMAS; DRIVEN;
D O I
10.1103/PhysRevLett.113.155004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Technical challenges using magneto-inertial sensors for gait analysis
    Gastaldi, L.
    Rosso, V.
    Gabola, V.
    Agostini, V.
    Frutos, M. M. Lovagnini
    Knaflitz, M.
    Takeda, R.
    Tadano, S.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2016, : 274 - 279
  • [32] Estimation of the center of rotation using wearable magneto-inertial sensors
    Crabolu, M.
    Pani, D.
    Raffo, L.
    Cereatti, A.
    JOURNAL OF BIOMECHANICS, 2016, 49 (16) : 3928 - 3933
  • [33] Numerical Simulation of the Interaction of a Magneto-Inertial Fusion Target with Plasma and Laser Drivers
    V. V. Kuzenov
    S. V. Ryzhkov
    High Temperature, 2022, 60 : S7 - S15
  • [34] Magnetized Plasma Target for Plasma-Jet-Driven Magneto-Inertial Fusion
    Hsu, Scott C.
    Langendorf, Samuel J.
    JOURNAL OF FUSION ENERGY, 2019, 38 (01) : 182 - 198
  • [35] Simulation of the target creation through FRC merging for a magneto-inertial fusion concept
    Li, Chenguang
    Yang, Xianjun
    PHYSICS OF PLASMAS, 2017, 24 (04)
  • [36] Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment
    Degnan, J. H.
    Amdahl, D. J.
    Domonkos, M.
    Lehr, F. M.
    Grabowski, C.
    Robinson, P. R.
    Ruden, E. L.
    White, W. M.
    Wurden, G. A.
    Intrator, T. P.
    Sears, J.
    Weber, T.
    Waganaar, W. J.
    Frese, M. H.
    Frese, S. D.
    Camacho, J. F.
    Coffey, S. K.
    Makhin, V.
    Roderick, N. F.
    Gale, D. G.
    Kostora, M.
    Lerma, A.
    McCullough, J. L.
    Sommars, W.
    Kiuttu, G. F.
    Bauer, B.
    Fuelling, S. R.
    Siemon, R. E.
    Lynn, A. G.
    Turchi, P. J.
    NUCLEAR FUSION, 2013, 53 (09)
  • [37] Magnetized Plasma Target for Plasma-Jet-Driven Magneto-Inertial Fusion
    Scott C. Hsu
    Samuel J. Langendorf
    Journal of Fusion Energy, 2019, 38 : 182 - 198
  • [38] Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions
    Sio, H.
    Moody, J. D.
    Ho, D. D.
    Pollock, B. B.
    Walsh, C. A.
    Lahmann, B.
    Strozzi, D. J.
    Kemp, G. E.
    Hsing, W. W.
    Crilly, A.
    Chittenden, J. P.
    Appelbe, B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [39] Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGA
    Rygg, J. R.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    PHYSICS OF PLASMAS, 2007, 14 (05)
  • [40] EXPERIMENTAL-DETERMINATION OF FUEL DENSITY-RADIUS PRODUCT OF INERTIAL CONFINEMENT FUSION-TARGETS USING SECONDARY NUCLEAR-FUSION REACTIONS
    AZECHI, H
    MIYANAGA, N
    STAPF, RO
    ITOGA, K
    NAKAISHI, H
    YAMANAKA, M
    SHIRAGA, H
    TSUJI, R
    IDO, S
    NISHIHARA, K
    IZAWA, Y
    YAMANAKA, T
    YAMANAKA, C
    APPLIED PHYSICS LETTERS, 1986, 49 (10) : 555 - 557