Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

被引:102
|
作者
Schmit, P. F. [1 ]
Knapp, P. F. [1 ]
Hansen, S. B. [1 ]
Gomez, M. R. [1 ]
Hahn, K. D. [1 ]
Sinars, D. B. [1 ]
Peterson, K. J. [1 ]
Slutz, S. A. [1 ]
Sefkow, A. B. [1 ]
Awe, T. J. [1 ]
Harding, E. [1 ]
Jennings, C. A. [1 ]
Chandler, G. A. [1 ]
Cooper, G. W. [1 ]
Cuneo, M. E. [1 ]
Geissel, M. [1 ]
Harvey-Thompson, A. J. [1 ]
Herrmann, M. C. [1 ]
Hess, M. H. [1 ]
Johns, O. [1 ]
Lamppa, D. C. [1 ]
Martin, M. R. [1 ]
McBride, R. D. [1 ]
Porter, J. L. [1 ]
Robertson, G. K. [1 ]
Rochau, G. A. [1 ]
Rovang, D. C. [1 ]
Ruiz, C. L. [1 ]
Savage, M. E. [1 ]
Smith, I. C. [1 ]
Stygar, W. A. [1 ]
Vesey, R. A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
PARTICLE STOPPING POWERS; CONFINEMENT FUSION; CYLINDRICAL GEOMETRY; IGNITION CONDITIONS; TARGET FUSION; AREAL DENSITY; ICF TARGETS; IMPLOSIONS; PLASMAS; DRIVEN;
D O I
10.1103/PhysRevLett.113.155004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Estimation of the neutron generation in the combined magneto-inertial fusion scheme
    Kuzenov, Victor V.
    Ryzhkov, Sergei V.
    Physica Scripta, 2021, 96 (12):
  • [22] Analysis of a magneto-inertial fusion concept with a field-reversed configuration for proton-boron fuel
    Mahdavi, M.
    Gholami, A.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (03) : 869 - 874
  • [23] Analysis of a magneto-inertial fusion concept with a field-reversed configuration for proton-boron fuel
    M. Mahdavi
    A. Gholami
    Indian Journal of Physics, 2022, 96 : 869 - 874
  • [24] Investigation of Proton-Boron-11 degenerate fuel pellet ignition in the magneto-inertial fusion process
    Khademloo, E.
    Mahdavi, M.
    Azadboni, F. K.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (13) : 4543 - 4553
  • [25] Macron Formed Liner as a Practical Method for Enabling Magneto-Inertial Fusion
    Kirtley, David
    Slough, John
    JOURNAL OF FUSION ENERGY, 2010, 29 (06) : 561 - 566
  • [26] An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories
    Yager-Elorriaga, D. A.
    Gomez, M. R.
    Ruiz, D. E.
    Slutz, S. A.
    Harvey-Thompson, A. J.
    Jennings, C. A.
    Knapp, P. F.
    Schmit, P. F.
    Weis, M. R.
    Awe, T. J.
    Chandler, G. A.
    Mangan, M.
    Myers, C. E.
    Fein, J. R.
    Galloway, B. R.
    Geissel, M.
    Glinsky, M. E.
    Hansen, S. B.
    Harding, E. C.
    Lamppa, D. C.
    Lewis, W. E.
    Rambo, P. K.
    Robertson, G. K.
    Savage, M. E.
    Shipley, G. A.
    Smith, I. C.
    Schwarz, J.
    Ampleford, D. J.
    Beckwith, K.
    Peterson, K. J.
    Porter, J. L.
    Rochau, G. A.
    Sinars, D. B.
    NUCLEAR FUSION, 2022, 62 (04)
  • [27] ANALYSIS OF THE COMPRESSION AND HEATING OF MAGNETIZED PLASMA TARGETS FOR MAGNETO-INERTIAL FUSION
    Ryzhkov, S. V.
    Chirkov, A. Yu
    Ivanov, A. A.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 135 - 138
  • [28] Macron Formed Liner as a Practical Method for Enabling Magneto-Inertial Fusion
    David Kirtley
    John Slough
    Journal of Fusion Energy, 2010, 29 : 561 - 566
  • [29] Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure
    Kuzenov, Victor V.
    Ryzhkov, Sergei, V
    PHYSICS OF PLASMAS, 2019, 26 (09)
  • [30] Numerical Simulation of the Interaction of a Magneto-Inertial Fusion Target with Plasma and Laser Drivers
    Kuzenov, V. V.
    Ryzhkov, S. V.
    HIGH TEMPERATURE, 2022, 60 (SUPPL 1) : S7 - S15