Bose-Einstein condensation in large time-averaged optical ring potentials

被引:71
|
作者
Bell, Thomas A. [1 ,2 ]
Glidden, Jake A. P. [1 ,2 ]
Humbert, Leif [1 ]
Bromley, Michael W. J. [1 ]
Haine, Simon A. [1 ]
Davis, Matthew J. [1 ,3 ]
Neely, Tyler W. [1 ,2 ]
Baker, Mark A. [1 ]
Rubinsztein-Dunlop, Halina [1 ,2 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst EQuS, St Lucia, Qld 4072, Australia
[3] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
澳大利亚研究理事会;
关键词
Bose-Einstein condensate; atom interferometry; superfluid; matter wave; ring trap; GAS;
D O I
10.1088/1367-2630/18/3/035003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 mu m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Bose-Einstein condensation in a frustrated triangular optical lattice
    Janzen, Peter
    Huang, Wen-Min
    Mathey, L.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [42] Diquark Bose-Einstein condensation
    Nawa, K.
    Nakano, E.
    Yabu, H.
    PHYSICAL REVIEW D, 2006, 74 (03):
  • [43] BOSE-EINSTEIN CONDENSATION IN A CAVITY
    GROSSMANN, S
    HOLTHAUS, M
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 97 (02): : 319 - 326
  • [44] Bose-Einstein condensation of chromium
    Griesmaier, A
    Werner, J
    Hensler, S
    Stuhler, J
    Pfau, T
    PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [45] Bose-Einstein Condensation in Multilayers
    Salas, P.
    Fortes, M.
    de Llano, M.
    Sevilla, F. J.
    Solis, M. A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 159 (5-6) : 540 - 548
  • [46] Bose-Einstein condensation of lithium
    Sackett, CA
    Bradley, CC
    Welling, M
    Hulet, RG
    APPLIED PHYSICS B-LASERS AND OPTICS, 1997, 65 (4-5): : 433 - 440
  • [47] Bose-Einstein condensation - Preface
    Burnett, K
    Edwards, M
    Clark, CW
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (04) : R3 - R3
  • [48] Nonequilibrium Bose-Einstein condensation
    Shukla, Vishwanath
    Nazarenko, Sergey
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [49] SPATIAL BOSE-EINSTEIN CONDENSATION
    MASUT, R
    MULLIN, WJ
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (06) : 493 - 497
  • [50] Bose-Einstein condensation of molecules
    Jochim, S
    Bartenstein, M
    Altmeyer, A
    Hendl, G
    Riedl, S
    Chin, C
    Denschlag, JH
    Grimm, R
    SCIENCE, 2003, 302 (5653) : 2101 - 2103