Bose-Einstein condensation in large time-averaged optical ring potentials

被引:71
|
作者
Bell, Thomas A. [1 ,2 ]
Glidden, Jake A. P. [1 ,2 ]
Humbert, Leif [1 ]
Bromley, Michael W. J. [1 ]
Haine, Simon A. [1 ]
Davis, Matthew J. [1 ,3 ]
Neely, Tyler W. [1 ,2 ]
Baker, Mark A. [1 ]
Rubinsztein-Dunlop, Halina [1 ,2 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst EQuS, St Lucia, Qld 4072, Australia
[3] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
澳大利亚研究理事会;
关键词
Bose-Einstein condensate; atom interferometry; superfluid; matter wave; ring trap; GAS;
D O I
10.1088/1367-2630/18/3/035003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 mu m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Bose-Einstein condensation of photons in an optical microcavity
    Klaers, Jan
    Schmitt, Julian
    Vewinger, Frank
    Weitz, Martin
    NATURE, 2010, 468 (7323) : 545 - 548
  • [22] ON BOSE-EINSTEIN CONDENSATION
    LANDSBERG, PT
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01): : 65 - 76
  • [24] ON BOSE-EINSTEIN CONDENSATION
    SCHARF, G
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (09) : 843 - 845
  • [25] Bose-Einstein condensation
    Townsend, C
    Ketterle, W
    Stringari, S
    PHYSICS WORLD, 1997, 10 (03) : 29 - 34
  • [26] Bose-Einstein condensation
    El-Sherbini, TM
    MODERN TRENDS IN PHYSICS RESEARCH, 2005, 748 : 44 - 54
  • [27] Bose-Einstein Condensation of Dipolar Excitons in a Ring Trap
    Chaplik, A. V.
    JETP LETTERS, 2016, 104 (11) : 791 - 795
  • [28] Long Time Convergence of the Bose-Einstein Condensation
    Lu, Xuguang
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (03) : 652 - 670
  • [29] THEORY OF BOSE-EINSTEIN CONDENSATION OF AN IMPERFECT BOSE-EINSTEIN GAS
    MATSUBARA, T
    MORITA, A
    HONDA, N
    PROGRESS OF THEORETICAL PHYSICS, 1956, 16 (05): : 447 - 454
  • [30] Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field
    Cleary, P. W.
    Hijmans, T. W.
    Walraven, J. T. M.
    PHYSICAL REVIEW A, 2010, 82 (06):