Bose-Einstein condensation in large time-averaged optical ring potentials

被引:71
|
作者
Bell, Thomas A. [1 ,2 ]
Glidden, Jake A. P. [1 ,2 ]
Humbert, Leif [1 ]
Bromley, Michael W. J. [1 ]
Haine, Simon A. [1 ]
Davis, Matthew J. [1 ,3 ]
Neely, Tyler W. [1 ,2 ]
Baker, Mark A. [1 ]
Rubinsztein-Dunlop, Halina [1 ,2 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst EQuS, St Lucia, Qld 4072, Australia
[3] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
基金
澳大利亚研究理事会;
关键词
Bose-Einstein condensate; atom interferometry; superfluid; matter wave; ring trap; GAS;
D O I
10.1088/1367-2630/18/3/035003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 mu m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Bose-Einstein condensation in large time- averaged optical ring potentials (vol 18, 035003, 2016)
    Bell, Thomas A.
    Glidden, Jake A. P.
    Humbert, Leif
    Bromley, Michael W. J.
    Haine, Simon A.
    Davis, Matthew J.
    Neely, Tyler W.
    Baker, Mark A.
    Rubinsztein-Dunlop, Halina
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [2] Bose-Einstein condensation of large numbers of atoms in a magnetic time-averaged orbiting potential trap
    Han, DJ
    Wynar, RH
    Courteille, P
    Heinzen, DJ
    PHYSICAL REVIEW A, 1998, 57 (06): : R4114 - R4117
  • [3] Phase and micromotion of Bose-Einstein condensates in a time-averaged ring trap
    Bell, Thomas A.
    Gauthier, Guillaume
    Neely, Tyler W.
    Rubinsztein-Dunlop, Halina
    Davis, Matthew J.
    Baker, Mark A.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [4] Techniques to cool and rotate Bose-Einstein condensates in time-averaged adiabatic potentials
    Gildemeister, M.
    Sherlock, B. E.
    Foot, C. J.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [5] Bose-Einstein condensation in random potentials
    Lenoble, O
    Pastur, LA
    Zagrebnov, VA
    COMPTES RENDUS PHYSIQUE, 2004, 5 (01) : 129 - 142
  • [6] Atom optics with Bose-Einstein condensation using optical potentials
    Katz, N
    Rowen, E
    Ozeri, R
    Steinhauer, J
    Gershnabel, E
    Davidson, N
    Decoherence, Entanglement and Information Protection in Complex Quantum Systems, 2005, 189 : 589 - 600
  • [7] Bose-Einstein condensation in harmonic oscillator potentials
    Yi, XX
    Wang, HJ
    Sun, CP
    PHYSICA SCRIPTA, 1998, 57 (03): : 324 - 326
  • [8] Bose-Einstein condensation in an optical lattice
    Blakie, P. B.
    Wang, Wen-Xin
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [9] Vortex pump for Bose-Einstein condensates utilizing a time-averaged orbiting potential trap
    Kuopanportti, Pekko
    Anderson, Brian P.
    Mottonen, Mikko
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [10] Bose-Einstein condensates in optical potentials
    L. Fallani
    C. Fort
    M. Inguscio
    La Rivista del Nuovo Cimento, 2005, 28 : 1 - 57