Consensus clustering and functional interpretation of gene-expression data

被引:110
|
作者
Swift, S
Tucker, A
Vinciotti, V
Martin, N
Orengo, C
Liu, XH
Kellam, P
机构
[1] UCL, Windeyer Inst, Dept Infect, Virus Genom & Bioinformat Grp, London W1T 4JF, England
[2] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
[3] Univ London Birkbeck Coll, Sch Comp Sci & Informat Syst, London WC1E 7HX, England
[4] UCL, Dept Biochem & Mol Biol, London WC1E 6BT, England
关键词
D O I
10.1186/gb-2004-5-11-r94
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFkappaB and the unfolded protein response in certain B-cell lymphomas.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [1] Consensus clustering and functional interpretation of gene-expression data
    Stephen Swift
    Allan Tucker
    Veronica Vinciotti
    Nigel Martin
    Christine Orengo
    Xiaohui Liu
    Paul Kellam
    Genome Biology, 5
  • [2] Clustering gene-expression data with repeated measurements
    Yeung, KY
    Medvedovic, M
    Bumgarner, RE
    GENOME BIOLOGY, 2003, 4 (05)
  • [3] Evolutionary algorithms for clustering gene-expression data
    Hruschka, ER
    de Castro, LN
    Campello, RJGB
    FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 403 - 406
  • [4] Clustering gene-expression data with repeated measurements
    Ka Yee Yeung
    Mario Medvedovic
    Roger E Bumgarner
    Genome Biology, 4
  • [5] Rotation Clustering: A Consensus Clustering Approach to Cluster Gene Expression Data
    Galdi, Paola
    Serra, Angela
    Tagliaferri, Roberto
    FUZZY LOGIC AND SOFT COMPUTING APPLICATIONS, WILF 2016, 2017, 10147 : 229 - 238
  • [6] A Computational Approach to the Functional Clustering of Periodic Gene-Expression Profiles
    Kim, Bong-Rae
    Zhang, Li
    Berg, Arthur
    Fan, Jianqing
    Wu, Rongling
    GENETICS, 2008, 180 (02) : 821 - 834
  • [7] Consensus Clustering in Gene Expression
    Galdi, Paola
    Napolitano, Francesco
    Tagliaferri, Roberto
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 57 - 67
  • [8] Consensus clustering of gene expression data and its application to gene function prediction
    Xiao, Guanghua
    Pan, Wei
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (03) : 733 - 751
  • [9] Optimal search space for clustering gene expression data via consensus
    Hirsch, Michael
    Swift, Stephen
    Liu, Xiohui
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (10) : 1327 - 1341
  • [10] Semi-supervised consensus clustering for gene expression data analysis
    Wang, Yunli
    Pan, Youlian
    BIODATA MINING, 2014, 7