Consensus clustering and functional interpretation of gene-expression data

被引:110
|
作者
Swift, S
Tucker, A
Vinciotti, V
Martin, N
Orengo, C
Liu, XH
Kellam, P
机构
[1] UCL, Windeyer Inst, Dept Infect, Virus Genom & Bioinformat Grp, London W1T 4JF, England
[2] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
[3] Univ London Birkbeck Coll, Sch Comp Sci & Informat Syst, London WC1E 7HX, England
[4] UCL, Dept Biochem & Mol Biol, London WC1E 6BT, England
关键词
D O I
10.1186/gb-2004-5-11-r94
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFkappaB and the unfolded protein response in certain B-cell lymphomas.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [11] Semi-supervised consensus clustering for gene expression data analysis
    Yunli Wang
    Youlian Pan
    BioData Mining, 7
  • [12] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75
  • [13] Semi-supervised clustering for gene-expression data in multiobjective optimization framework
    Alok, Abhay Kumar
    Saha, Sriparna
    Ekbal, Asif
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (02) : 421 - 439
  • [14] Clustering by soft-constraint affinity propagation: applications to gene-expression data
    Leone, Michele
    Sumedha
    Weigt, Martin
    BIOINFORMATICS, 2007, 23 (20) : 2708 - 2715
  • [15] Semi-supervised clustering for gene-expression data in multiobjective optimization framework
    Abhay Kumar Alok
    Sriparna Saha
    Asif Ekbal
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 421 - 439
  • [16] Simultaneous Feature Selection and Semi-supervised Clustering for Gene-Expression Data
    Alok, Abhay Kumar
    Saha, Sriparna
    Ekbal, Asif
    Kanekar, Neha
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [17] Exploiting Gene-Expression Data
    Liszewski, Kathy
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (07): : 1 - +
  • [18] Exploiting gene-expression data
    Liszewski, Kathy
    Genetic Engineering and Biotechnology News, 2012, 32 (07): : 30 - 32
  • [19] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [20] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    BMC Bioinformatics, 9