Evolutionary algorithms for clustering gene-expression data

被引:45
|
作者
Hruschka, ER
de Castro, LN
Campello, RJGB
机构
关键词
D O I
10.1109/ICDM.2004.10073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work deals with the problem of automatically finding optimal partitions in bioinformatics datasets. We propose incremental improvements for a Clustering Genetic Algorithm (CGA), culminating in the Evolutionary Algorithm for Clustering (EAC). The CGA and its modified versions are evaluated in five gene-expression datasets, showing that the proposed EA C is a promising tool for clustering gene-expression data.
引用
收藏
页码:403 / 406
页数:4
相关论文
共 50 条
  • [1] Clustering gene-expression data with repeated measurements
    Yeung, KY
    Medvedovic, M
    Bumgarner, RE
    GENOME BIOLOGY, 2003, 4 (05)
  • [2] Clustering gene-expression data with repeated measurements
    Ka Yee Yeung
    Mario Medvedovic
    Roger E Bumgarner
    Genome Biology, 4
  • [3] Clustering Algorithms: Their Application to Gene Expression Data
    Oyelade, Jelili
    Isewon, Itunuoluwa
    Oladipupo, Funke
    Aromolaran, Olufemi
    Uwoghiren, Efosa
    Ameh, Faridah
    Achas, Moses
    Adebiyi, Ezekiel
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2016, 10 : 237 - 253
  • [4] Evaluation of clustering algorithms for gene expression data
    Datta, Susmita
    Datta, Somnath
    BMC BIOINFORMATICS, 2006, 7 (Suppl 4)
  • [5] Evaluation of clustering algorithms for gene expression data
    Susmita Datta
    Somnath Datta
    BMC Bioinformatics, 7
  • [6] On Evolutionary Algorithms for Biclustering of Gene Expression Data
    Carballido Jessica, A.
    Gallo Cristian, A.
    Dussaut Julieta, S.
    Ignacio, Ponzoni
    CURRENT BIOINFORMATICS, 2015, 10 (03) : 259 - 267
  • [7] Consensus clustering and functional interpretation of gene-expression data
    Stephen Swift
    Allan Tucker
    Veronica Vinciotti
    Nigel Martin
    Christine Orengo
    Xiaohui Liu
    Paul Kellam
    Genome Biology, 5
  • [8] Consensus clustering and functional interpretation of gene-expression data
    Swift, S
    Tucker, A
    Vinciotti, V
    Martin, N
    Orengo, C
    Liu, XH
    Kellam, P
    GENOME BIOLOGY, 2004, 5 (11)
  • [9] Parallelizing evolutionary algorithms for clustering data
    Kwedlo, Wojciech
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2006, 3911 : 430 - 438
  • [10] Evolutionary Clustering Algorithms for Relational Data
    Banerjee, Amit
    Abu-Mahfouz, Issam
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 276 - 283