Estimator Based Multi-Eigenmode Control of Cantilevers in Multifrequency Atomic Force Microscopy

被引:0
|
作者
Schuh, Andreas [1 ,2 ]
Bozchalooi, Iman Soltani [1 ]
Rangelow, Ivo W. [2 ]
Youcef-Toumi, Kamal [1 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Ilmenau Univ Technol, Fac Elect Engn & Informat Technol, Dept Microelect & Nanoelect Syst, D-98684 Ilmenau, Germany
关键词
SPECTROSCOPY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today, multifrequency Atomic Force Microscopy is a popular technique to extract properties of a sample surface other than the topography through different channels. Such channels are represented by the higher eigenmodes and harmonics of the flexural vibrations of the cantilever. In one method two or more eigenmodes are actuated simultaneously, whereas another method captures the harmonics excited from the first eigenmode tapping the surface. In this paper, we present a compensation strategy to modify the dynamics of two transverse eigenmodes independently. The modeling, compensator design, implementation and imaging performance on a polymer sample is outlined. In particular low Q factors in the first and high Q factors in the second eigenmode indicate a strong improvement in material contrast mapping. As the imaging bandwidth depends on the Q factor of the first eigenmode, the imaging rate is increased simultaneously.
引用
收藏
页码:1905 / 1910
页数:6
相关论文
共 50 条
  • [41] Patterning of cantilevers with functionalized nanoparticles for combinatorial atomic force microscopy
    Chisholm, Roderick A.
    Qiu, Wally
    Green, John-Bruce D.
    LANGMUIR, 2007, 23 (15) : 7891 - 7894
  • [42] Hollow Atomic Force Microscopy Cantilevers with Nanoscale Wall Thicknesses
    Cha, Wujoon
    Campbell, Matthew F.
    Hasz, Kathryn
    Nicaise, Samuel M.
    Lilley, Drew E.
    Sato, Takaaki
    Carpick, Robert W.
    Bargatin, Igor
    SMALL, 2021, 17 (51)
  • [43] A method for determining the spring constant of cantilevers for atomic force microscopy
    Torii, A
    Sasaki, M
    Hane, K
    Okuma, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1996, 7 (02) : 179 - 184
  • [44] Comparison of calibration methods for atomic-force microscopy cantilevers
    Burnham, NA
    Chen, X
    Hodges, CS
    Matei, GA
    Thoreson, EJ
    Roberts, CJ
    Davies, MC
    Tendler, SJB
    NANOTECHNOLOGY, 2003, 14 (01) : 1 - 6
  • [45] "Noiseless" thermal noise measurement of atomic force microscopy cantilevers
    Pottier, Basile
    Bellon, Ludovic
    APPLIED PHYSICS LETTERS, 2017, 110 (09)
  • [46] Precision and accuracy of thermal calibration of atomic force microscopy cantilevers
    Matei, G. A.
    Thoreson, E. J.
    Pratt, J. R.
    Newell, D. B.
    Burnham, N. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (08):
  • [47] Cleaning of cantilevers for atomic force microscopy in supercritical carbon dioxide
    Timashev, P. S.
    Kotova, S. L.
    Glagolev, N. N.
    Aksenova, N. A.
    Solovieva, A. B.
    Bagratashvili, V. N.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 8 (08) : 1081 - 1086
  • [48] Detection of microviscosity by using uncalibrated atomic force microscopy cantilevers
    Papi, Massimiliano
    Maulucci, Giuseppe
    Arcovito, Giuseppe
    Paoletti, Paolo
    Vassalli, Massimo
    De Spirito, Marco
    APPLIED PHYSICS LETTERS, 2008, 93 (12)
  • [49] A Systematic Method for Developing Harmonic Cantilevers for Atomic Force Microscopy
    Zhu, Benliang
    Zimmermann, Soren
    Zhang, Xianmin
    Fatikow, Sergej
    JOURNAL OF MECHANICAL DESIGN, 2017, 139 (01)
  • [50] Magnetostriction-driven cantilevers for dynamic atomic force microscopy
    Penedo, M.
    Fernandez-Martinez, I.
    Costa-Kraemer, J. L.
    Luna, M.
    Briones, F.
    APPLIED PHYSICS LETTERS, 2009, 95 (14)