Waist size for cusps in hyperbolic 3-manifolds II

被引:1
|
作者
Adams, Colin [1 ]
机构
[1] Williams Coll, Dept Math & Stat, Bascom Hall, Williamstown, MA 01267 USA
关键词
Hyperbolic; 3-manifold; Waist size; Cusp; DEHN; GEOMETRY; VOLUME; BOUNDS;
D O I
10.1007/s10711-019-00425-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The waist size of a cusp in an orientable hyperbolic 3-manifold is the length of the shortest nontrivial curve generated by a parabolic isometry in the maximal cusp boundary. Previously, it was shown that the smallest possible waist size, which is 1, is realized only by the cusp in the figure-eight knot complement. In this paper, it is proved that the next two smallest waist sizes are realized uniquely for the cusps in the 5(2) knot complement and the manifold obtained by (2,1)-surgery on the Whitehead link. One application is an improvement on the universal upper bound for the length of an unknotting tunnel in a 2-cusped hyperbolic 3-manifold.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [21] On limits of tame hyperbolic 3-manifolds
    Canary, RD
    Minsky, YN
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 1 - 41
  • [22] Thick Surfaces in Hyperbolic 3-Manifolds
    Joseph D. Masters
    Geometriae Dedicata, 2006, 119 : 17 - 33
  • [23] Klein slopes on hyperbolic 3-manifolds
    Matignon, Daniel
    Sayari, Nabil
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 419 - 447
  • [24] Hyperbolic 3-Manifolds Boot Camp
    Adams, Colin
    MATHEMATICAL INTELLIGENCER, 2021, 43 (01): : 40 - 41
  • [25] Group Actions on Hyperbolic 3-manifolds
    王诗宬
    数学进展, 1991, (01) : 77 - 85
  • [26] Verified Computations for Hyperbolic 3-Manifolds
    Hoffman, Neil
    Ichihara, Kazuhiro
    Kashiwagi, Masahide
    Masai, Hidetoshi
    Oishi, Shin'ichi
    Takayasu, Akitoshi
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 66 - 78
  • [27] Norms on the cohomology of hyperbolic 3-manifolds
    Jeffrey F. Brock
    Nathan M. Dunfield
    Inventiones mathematicae, 2017, 210 : 531 - 558
  • [28] On certain classes of hyperbolic 3-manifolds
    Alberto Cavicchioli
    Luisa Paoluzzi
    manuscripta mathematica, 2000, 101 : 457 - 494
  • [29] THE SPECTRUM OF DEGENERATING HYPERBOLIC 3-MANIFOLDS
    CHAVEL, I
    DODZIUK, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 39 (01) : 123 - 137
  • [30] TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS
    Rodriguez Hertz, Federico
    Rodriguez Hertz, Maria Alejandra
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 185 - 202