Verified Computations for Hyperbolic 3-Manifolds

被引:22
|
作者
Hoffman, Neil [1 ]
Ichihara, Kazuhiro [2 ]
Kashiwagi, Masahide [3 ]
Masai, Hidetoshi [4 ]
Oishi, Shin'ichi [3 ]
Takayasu, Akitoshi [3 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Nihon Univ, Coll Humanities & Sci, Tokyo, Japan
[3] Waseda Univ, Dept Appl Math, Tokyo, Japan
[4] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
基金
澳大利亚研究理事会;
关键词
hyperbolic; 3-manifold; interval arithmetic; Krawczyk's test; verified numerical computations;
D O I
10.1080/10586458.2015.1029599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given cusped 3-manifold M admitting an ideal triangulation, we describe a method to rigorously prove that either M or a filling of M admits a complete hyperbolic structure via verified computer calculations. Central to our method is an implementation of interval arithmetic and Krawczyk's test. These techniques represent an improvement over existing algorithms as they are faster while accounting for error accumulation in a more direct and user-friendly way.
引用
收藏
页码:66 / 78
页数:13
相关论文
共 50 条
  • [1] Verified computations for closed hyperbolic 3-manifolds
    Goerner, Matthias
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (02) : 596 - 618
  • [2] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [3] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [4] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [5] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [6] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    [J]. Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [7] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730
  • [8] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    [J]. TOPOLOGY, 1985, 24 (03) : 307 - 332
  • [9] Balls in hyperbolic 3-manifolds
    Przeworski, A
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 161 - 171
  • [10] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110