Maximum Likelihood 2-D DOA Estimation via Signal Separation and Importance Sampling

被引:17
|
作者
Fang, Wen-Hsien [1 ]
Lee, Yi-Chiao [1 ]
Chen, Yie-Tarng [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei, Taiwan
关键词
Importance sampling; maximum likelihood; signal separation; two-dimensional (2-D) direction-of-arrival (DOA) estimation;
D O I
10.1109/LAWP.2015.2471800
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a maximum likelihood (ML)-based algorithm for two-dimensional (2-D) direction -of -arrival (DOA) estimation based on a uniform rectangular array (URA). The new algorithm iteratively estimates the parameters in a rough to fine manner, intervened with filtering processes to separate the signals into appropriate groups. To facilitate implementations of the ML estimation, the theorem of Pincus and a Monte Carlo method known as importance sampling (IS) are employed to determine the global optimum ML solution. As such, the parameters can be precisely estimated with only moderate complexity. Moreover, the estimated parameters are automatically paired together without extra computations. Simulation results show that the new algorithm outperforms the main state-of-the-art works and can achieve the Cramer -Rao lower bound (CRLB) even in low signal-to-noise ratio (SNR) scenarios.
引用
收藏
页码:746 / 749
页数:4
相关论文
共 50 条
  • [41] Joint 2-D DOA Estimation via Sparse L-shaped Array
    Gu, Jian-Feng
    Zhu, Wei-Ping
    Swamy, M. N. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (05) : 1171 - 1182
  • [42] Performance Analysis of 2-D DOA Estimation via L-Shaped Array
    Gu, Jian-Feng
    Zhu, Wei-Ping
    Swamy, M. N. S.
    2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2012,
  • [43] On the use of marginal posteriors in marginal likelihood estimation via importance sampling
    Perrakis, Konstantinos
    Ntzoufras, Ioannis
    Tsionas, Efthymios G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 54 - 69
  • [44] Improved marginal likelihood estimation via power posteriors and importance sampling
    Li, Yong
    Wang, Nianling
    Yu, Jun
    JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 28 - 52
  • [45] Maximum Likelihood Signal Parameter Estimation via Track Before Detect
    Uney, Murat
    Mulgrew, Bernard
    Clark, Daniel
    2015 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2015, : 26 - 30
  • [46] DOA estimation algorithm based on maximum likelihood estimation for nested array
    Electronic Engineering Institute, Hefei
    230037, China
    不详
    230037, China
    Hangkong Xuebao, 11
  • [47] Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling
    Saha, S
    Kay, SM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 224 - 230
  • [48] Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling
    Christian N. Brinch
    Computational Statistics, 2012, 27 : 13 - 28
  • [49] Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling
    Brinch, Christian N.
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 13 - 28
  • [50] Fast Algorithm for Maximum Likelihood DOA Estimation in MIMO Array
    Shi, Wentao
    Huang, Jianguo
    He, Chengbing
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2011, VOL I, 2011, : 546 - 549