On the use of marginal posteriors in marginal likelihood estimation via importance sampling

被引:54
|
作者
Perrakis, Konstantinos [1 ]
Ntzoufras, Ioannis [1 ]
Tsionas, Efthymios G. [2 ]
机构
[1] Athens Univ Econ & Business, Dept Stat, Athens, Greece
[2] Athens Univ Econ & Business, Dept Econ, Athens, Greece
关键词
Finite normal mixtures; Importance sampling; Marginal posterior; Marginal likelihood estimation; Random effect models; Rao-Blackwellization; APPROXIMATE BAYESIAN-INFERENCE; NORMALIZING CONSTANTS; MIXTURE-MODELS; SIMULATION; DISTRIBUTIONS; SELECTION;
D O I
10.1016/j.csda.2014.03.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The efficiency of a marginal likelihood estimator where the product of the marginal posterior distributions is used as an importance sampling function is investigated. The approach is generally applicable to multi-block parameter vector settings, does not require additional Markov Chain Monte Carlo (MCMC) sampling and is not dependent on the type of MCMC scheme used to sample from the posterior. The proposed approach is applied to normal regression models, finite normal mixtures and longitudinal Poisson models, and leads to accurate marginal likelihood estimates. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 69
页数:16
相关论文
共 50 条
  • [1] Improved marginal likelihood estimation via power posteriors and importance sampling
    Li, Yong
    Wang, Nianling
    Yu, Jun
    [J]. JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 28 - 52
  • [2] Marginal likelihood estimation via power posteriors
    Friel, N.
    Pettitt, A. N.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 589 - 607
  • [3] Robustly estimating the marginal likelihood for cognitive models via importance sampling
    Tran, M. -N.
    Scharth, M.
    Gunawan, D.
    Kohn, R.
    Brown, S. D.
    Hawkins, G. E.
    [J]. BEHAVIOR RESEARCH METHODS, 2021, 53 (03) : 1148 - 1165
  • [4] Robustly estimating the marginal likelihood for cognitive models via importance sampling
    M.-N. Tran
    M. Scharth
    D. Gunawan
    R. Kohn
    S. D. Brown
    G. E. Hawkins
    [J]. Behavior Research Methods, 2021, 53 : 1148 - 1165
  • [5] Stochastic Gradient Annealed Importance Sampling for Efficient Online Marginal Likelihood Estimation
    Cameron, Scott A.
    Eggers, Hans C.
    Kroon, Steve
    [J]. ENTROPY, 2019, 21 (11)
  • [6] Bayesian updating and marginal likelihood estimation by cross entropy based importance sampling
    Engel, Michael
    Kanjilal, Oindrila
    Papaioannou, Iason
    Straub, Daniel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [7] Marginal Multiple Importance Sampling
    West, Rex
    Georgiev, Iliyan
    Hachisuka, Toshiya
    [J]. PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [8] ON THE USE OF MARGINAL LIKELIHOOD IN TIME-SERIES MODEL ESTIMATION
    WILSON, GT
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (01): : 15 - 27
  • [9] ASYMPTOTIC BEHAVIOUR OF THE EMPIRICAL BAYES POSTERIORS ASSOCIATED TO MAXIMUM MARGINAL LIKELIHOOD ESTIMATOR
    Rousseau, Judith
    Szabo, Botond
    [J]. ANNALS OF STATISTICS, 2017, 45 (02): : 833 - 865
  • [10] Marginal likelihood for estimation and detection theory
    Noam, Yair
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (08) : 3963 - 3974