Isoperimetric inequalities for the logarithmic potential operator

被引:22
|
作者
Ruzhansky, Michael [1 ]
Suragan, Durvudkhan [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
Logarithmic potential; Characteristic numbers; Schatten class; Isoperimetric inequality; Rayleigh-Faber-Krahn inequality; Polya inequality; EIGENVALUES; LAPLACIAN;
D O I
10.1016/j.jmaa.2015.07.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the disc is a maximiser of the Schatten p-norm of the logarithmic potential operator among all domains of a given measure in R-2, for all even integers 2 <= p < infinity. We also show that the equilateral triangle has the largest Schatten p-norm among all triangles of a given area. For the logarithmic potential operator on bounded open or triangular domains, we also obtain analogies of the Rayleigh-Faber-Krahn or Polya inequalities, respectively. The logarithmic potential operator can be related to a nonlocal boundary value problem for the Laplacian, so we obtain isoperimetric inequalities for its eigenvalues as well. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1676 / 1689
页数:14
相关论文
共 50 条
  • [1] Isoperimetric Inequalities for the Heat Potential Operator
    Kal'menov, Tynysbek Sh.
    Kassymov, Aidyn
    Suragan, Durvudkhan
    FILOMAT, 2018, 32 (03) : 903 - 910
  • [2] A note on isoperimetric inequalities for logarithmic potentials
    Zoalroshd, Seyed M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1152 - 1158
  • [4] Isoperimetric Inequalities for Eigenvalues of the Laplace Operator
    Benguria, Rafael D.
    Linde, Helmut
    FOURTH SUMMER SCHOOL IN ANALYSIS AND MATHEMATICAL PHYSICS: TOPIC IN SPECTRAL THEORY AND QUANTUM MECHANICS, 2008, 476 : 1 - 40
  • [5] Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrodinger operator
    Benguria, Rafael D.
    Linde, Helmut
    Loewe, Benjamin
    BULLETIN OF MATHEMATICAL SCIENCES, 2012, 2 (01) : 1 - 56
  • [6] LOGARITHMIC POTENTIAL OPERATOR
    TROUTMAN, JL
    ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (03) : 365 - &
  • [7] Isoperimetric Inequalities for the Cauchy-Dirichlet Heat Operator
    Kal'menov, Tynysbek Sh.
    Kassymov, Aidyn
    Suragan, Durvudkhan
    FILOMAT, 2018, 32 (03) : 885 - 892
  • [8] Heat kernel estimates for an operator with a singular drift and isoperimetric inequalities
    Grigor'yan, Alexander
    Ouyang, Shunxiang
    Roeckner, Michael
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 736 : 1 - 31
  • [9] Isoperimetric Inequalities for Higher Eigenvalues of the Laplace—Beltrami Operator on Surfaces
    Alexei V. Penskoi
    Proceedings of the Steklov Institute of Mathematics, 2019, 305 : 270 - 286
  • [10] ISOPERIMETRIC-INEQUALITIES IN POTENTIAL-THEORY
    HANSEN, W
    NADIRASHVILI, N
    POTENTIAL ANALYSIS, 1994, 3 (01) : 1 - 14