Isoperimetric inequalities for the logarithmic potential operator

被引:22
|
作者
Ruzhansky, Michael [1 ]
Suragan, Durvudkhan [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
Logarithmic potential; Characteristic numbers; Schatten class; Isoperimetric inequality; Rayleigh-Faber-Krahn inequality; Polya inequality; EIGENVALUES; LAPLACIAN;
D O I
10.1016/j.jmaa.2015.07.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the disc is a maximiser of the Schatten p-norm of the logarithmic potential operator among all domains of a given measure in R-2, for all even integers 2 <= p < infinity. We also show that the equilateral triangle has the largest Schatten p-norm among all triangles of a given area. For the logarithmic potential operator on bounded open or triangular domains, we also obtain analogies of the Rayleigh-Faber-Krahn or Polya inequalities, respectively. The logarithmic potential operator can be related to a nonlocal boundary value problem for the Laplacian, so we obtain isoperimetric inequalities for its eigenvalues as well. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1676 / 1689
页数:14
相关论文
共 50 条
  • [41] ISOPERIMETRIC-INEQUALITIES IN ELECTROCHEMISTRY
    MOSSINO, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (19): : 869 - 871
  • [42] Amenability, hyperfiniteness, and isoperimetric inequalities
    Kaimanovich, VA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (09): : 999 - 1004
  • [43] Isoperimetric inequalities for nilpotent groups
    Steve M. Gersten
    Derek F. Holt
    Tim R. Riley
    Geometric & Functional Analysis GAFA, 2003, 13 : 795 - 814
  • [44] ISOPERIMETRIC INEQUALITIES IN THE BROWNIAN PLANE
    Riera, Armand
    ANNALS OF PROBABILITY, 2022, 50 (05): : 2013 - 2055
  • [45] ISOPERIMETRIC-INEQUALITIES FOR QUERMASSINTEGRALS
    TRUDINGER, NS
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (04): : 411 - 425
  • [46] ISOPERIMETRIC INEQUALITIES FOR MANIFOLDS WITH BOUNDARY
    HANES, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 203 - &
  • [47] Percolation and local isoperimetric inequalities
    Augusto Teixeira
    Probability Theory and Related Fields, 2016, 165 : 963 - 984
  • [48] Isoperimetric inequalities and asymptotic geometry
    Wenger, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 1049 - 1073
  • [49] Riemannian submersions and isoperimetric inequalities
    Kasue, A
    Mendori, A
    GEOMETRIAE DEDICATA, 1998, 70 (01) : 27 - 47
  • [50] Nonlocal quantitative isoperimetric inequalities
    Agnese Di Castro
    Matteo Novaga
    Berardo Ruffini
    Enrico Valdinoci
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2421 - 2464