Heat kernel estimates for an operator with a singular drift and isoperimetric inequalities

被引:1
|
作者
Grigor'yan, Alexander [1 ]
Ouyang, Shunxiang [1 ]
Roeckner, Michael [1 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
关键词
LOG-CONCAVE; PRODUCTS;
D O I
10.1515/crelle-2015-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we prove upper and lower bounds of the heat kernel for the operator Delta - del(vertical bar x vertical bar(-alpha) ) . del in R-n \ {0} where alpha > 0. We obtain these bounds from an isoperimetric inequality for a measure e(-vertical bar x vertical bar-alpha) dx on R-n \ {0}. The latter amounts to a certain functional isoperimetric inequality for the radial part of this measure.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [1] Isoperimetric Inequalities for the Heat Potential Operator
    Kal'menov, Tynysbek Sh.
    Kassymov, Aidyn
    Suragan, Durvudkhan
    FILOMAT, 2018, 32 (03) : 903 - 910
  • [2] Harnack inequalities and heat kernel estimates for SDEs with singular drifts
    Shao, Jinghai
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (05): : 589 - 601
  • [3] Isoperimetric Inequalities for the Cauchy-Dirichlet Heat Operator
    Kal'menov, Tynysbek Sh.
    Kassymov, Aidyn
    Suragan, Durvudkhan
    FILOMAT, 2018, 32 (03) : 885 - 892
  • [4] Gradient estimates of Dirichlet heat semigroups and application to isoperimetric inequalities
    Wang, FY
    ANNALS OF PROBABILITY, 2004, 32 (1A): : 424 - 440
  • [5] Isoperimetric inequalities for the logarithmic potential operator
    Ruzhansky, Michael
    Suragan, Durvudkhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1676 - 1689
  • [6] Isoperimetric Inequalities for Eigenvalues of the Laplace Operator
    Benguria, Rafael D.
    Linde, Helmut
    FOURTH SUMMER SCHOOL IN ANALYSIS AND MATHEMATICAL PHYSICS: TOPIC IN SPECTRAL THEORY AND QUANTUM MECHANICS, 2008, 476 : 1 - 40
  • [7] On the equivalence of parabolic Harnack inequalities and heat kernel estimates
    Barlow, Martin T.
    Grigor'yan, Alexander
    Kumagai, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) : 1091 - 1146
  • [8] Weighted Norm Inequalities for Toeplitz Type Operator Related to Singular Integral Operator with Variable Kernel
    Yuexiang He
    AnalysisinTheoryandApplications, 2019, 35 (04) : 377 - 391
  • [9] WEIGHTED NORM INEQUALITIES FOR TOEPLITZ TYPE OPERATOR ASSOCIATED TO SINGULAR IN OPERATOR WITH NON SMOOTH KERNEL
    Hu, Yue
    Wang, Yueshan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 659 - 673
  • [10] Quantitative Heat-Kernel Estimates for Diffusions with Distributional Drift
    Nicolas Perkowski
    Willem van Zuijlen
    Potential Analysis, 2023, 59 : 731 - 752