High-throughput protein sequencing

被引:11
|
作者
Pham, V [1 ]
Tropea, J [1 ]
Wong, S [1 ]
Quach, J [1 ]
Henzel, WJ [1 ]
机构
[1] Genentech Inc, Dept Prot Chem, San Francisco, CA 94080 USA
关键词
D O I
10.1021/ac0206317
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We have designed and implemented an autosampler that provides additional sample capacity on a commercial protein sequencer. The autosampler attaches to a standard ABI Procise sequencer, enabling a single-sample cartridge to hold up to six separate samples. The autosampler is used in combination with faster Edman cycles and a rapid 12-min PTH separation to significantly increase the speed of automated protein sequencing. We also describe Edman chemistry modifications that improve coupling efficiency and prevent internal cleavage that can occur when samples are sequenced in the standard glass cartridges.
引用
收藏
页码:875 / 882
页数:8
相关论文
共 50 条
  • [21] HIGH-THROUGHPUT PROTEIN CRYSTALLIZATION
    Chayen, Naomi E.
    STRUCTURAL GENOMICS, PART C, 2009, 77 : 1 - 22
  • [22] High-throughput sequencing methods to study neuronal RNA-protein interactions
    Ule, Jernej
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 : 1278 - 1280
  • [23] Small molecule regulators of microRNAs identified by high-throughput screen coupled with high-throughput sequencing
    Lien D. Nguyen
    Zhiyun Wei
    M. Catarina Silva
    Sergio Barberán-Soler
    Jiarui Zhang
    Rosalia Rabinovsky
    Christina R. Muratore
    Jonathan M. S. Stricker
    Colin Hortman
    Tracy L. Young-Pearse
    Stephen J. Haggarty
    Anna M. Krichevsky
    Nature Communications, 14 (1)
  • [24] Small molecule regulators of microRNAs identified by high-throughput screen coupled with high-throughput sequencing
    Nguyen, Lien D.
    Wei, Zhiyun
    Silva, M. Catarina
    Barberan-Soler, Sergio
    Zhang, Jiarui
    Rabinovsky, Rosalia
    Muratore, Christina R.
    Stricker, Jonathan M. S.
    Hortman, Colin
    Young-Pearse, Tracy L.
    Haggarty, Stephen J.
    Krichevsky, Anna M.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing
    Ladner, Jason T.
    Beitzel, Brett
    Chain, Patrick S. G.
    Davenport, Matthew G.
    Donaldson, Eric F.
    Frieman, Matthew
    Kugelman, Jeffrey R.
    Kuhn, Jens H.
    O'Rear, Jules
    Sabeti, Pardis C.
    Wentworth, David E.
    Wiley, Michael R.
    Yu, Guo-Yun
    Sozhamannan, Shanmuga
    Bradburne, Christopher
    Palacios, Gustavo
    MBIO, 2014, 5 (03): : 1 - 5
  • [26] Genomics - from Neanderthals to high-throughput sequencing
    Matthew John Wakefield
    Genome Biology, 7
  • [27] Efficient and quantitative high-throughput tRNA sequencing
    Zheng G.
    Qin Y.
    Clark W.C.
    Dai Q.
    Yi C.
    He C.
    Lambowitz A.M.
    Pan T.
    Nature Methods, 2015, 12 (9) : 835 - 837
  • [28] High-throughput sequencing: a failure mode analysis
    Yang, GS
    Stott, JM
    Smailus, D
    Barber, SA
    Balasundaram, M
    Marra, MA
    Holt, RA
    BMC GENOMICS, 2005, 6 (1)
  • [29] High-throughput sequencing in neonatology: chances and risks
    Rudnik-Schoeneborn, Sabine
    Ralser, Elisabeth
    Konzett, Karin
    MONATSSCHRIFT KINDERHEILKUNDE, 2024, 172 (09) : 766 - 775
  • [30] Mutational studies of a deoxyribozyme by high-throughput sequencing
    Venugopal, Dhamodharan
    Kobori, Shungo
    Yokobayashi, Yohei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253