Let G(m, n) = max{det (WW)-W-T vertical bar W is an element of M-m,M-n(0, 1)}. A matrix W is an element of M-m,M-n(0, 1) with det (WW)-W-T = G(m, n) is called D-optimal. Here we determine G(m, 8) for m large with the help of a variation of Mitchell's DETMAX algorithm, and describe the D-optimal examples. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Otto von Guericke Univ, Inst Math Stochast, Universitatsplatz 2, D-39106 Magdeburg, GermanyOtto von Guericke Univ, Inst Math Stochast, Universitatsplatz 2, D-39106 Magdeburg, Germany
Radloff, Martin
Schwabe, Rainer
论文数: 0引用数: 0
h-index: 0
机构:
Otto von Guericke Univ, Inst Math Stochast, Universitatsplatz 2, D-39106 Magdeburg, GermanyOtto von Guericke Univ, Inst Math Stochast, Universitatsplatz 2, D-39106 Magdeburg, Germany
机构:
Poznan Univ Life Sci, Dept Math & Stat Methods, Wojska Polskiego 28, PL-60637 Poznan, PolandPoznan Univ Life Sci, Dept Math & Stat Methods, Wojska Polskiego 28, PL-60637 Poznan, Poland
Ceranka, B.
Graczyk, M.
论文数: 0引用数: 0
h-index: 0
机构:
Poznan Univ Life Sci, Dept Math & Stat Methods, Wojska Polskiego 28, PL-60637 Poznan, PolandPoznan Univ Life Sci, Dept Math & Stat Methods, Wojska Polskiego 28, PL-60637 Poznan, Poland