Collisionless drag for a one-dimensional two-component Bose-Hubbard model

被引:11
|
作者
Contessi, Daniele [1 ]
Romito, Donato [2 ,3 ]
Rizzi, Matteo [4 ,5 ]
Recati, Alessio [1 ,2 ]
机构
[1] Univ Trento, Dipartimento Fis, I-38123 Povo, Italy
[2] INO CNR BEC Ctr, I-38123 Povo, Italy
[3] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[4] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, Inst Quantum Control, D-52425 Julich, Germany
[5] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
关键词
Bose Hubbard model - Correlation function - Interspecies interactions - Kosterlitz-Thouless - Luttinger parameter - Network algorithms - Spin susceptibility - Superfluid density;
D O I
10.1103/PhysRevResearch.3.L022017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component one-dimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter K-S in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Superfluid drag in the two-component Bose-Hubbard model
    Sellin, Karl
    Babaev, Egor
    [J]. PHYSICAL REVIEW B, 2018, 97 (09)
  • [2] A polaritonic two-component Bose-Hubbard model
    Hartmann, M. J.
    Brandao, F. G. S. L.
    Plenio, M. B.
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [3] The one-dimensional extended Bose-Hubbard model
    Ramesh V. Pai
    Rahul Pandit
    [J]. Journal of Chemical Sciences, 2003, 115 (5-6) : 721 - 726
  • [4] The one-dimensional extended Bose-Hubbard model
    Pai, RV
    Pandit, R
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 2003, 115 (5-6): : 721 - 726
  • [5] Superfluidity in the one-dimensional Bose-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    [J]. PHYSICAL REVIEW B, 2022, 105 (13)
  • [6] Phases of the one-dimensional Bose-Hubbard model
    Kühner, TD
    Monien, H
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : R14741 - R14744
  • [7] Dynamic properties of the one-dimensional Bose-Hubbard model
    Ejima, S.
    Fehske, H.
    Gebhard, F.
    [J]. EPL, 2011, 93 (03)
  • [8] Topological pumping in the one-dimensional Bose-Hubbard model
    Rossini, Davide
    Gibertini, Marco
    Giovannetti, Vittorio
    Fazio, Rosario
    [J]. PHYSICAL REVIEW B, 2013, 87 (08):
  • [9] Soliton excitations of one-dimensional Bose-Hubbard model
    Xie Yuan-Dong
    [J]. ACTA PHYSICA SINICA, 2012, 61 (02)
  • [10] Reentrance and entanglement in the one-dimensional Bose-Hubbard model
    Pino, M.
    Prior, J.
    Somoza, A. M.
    Jaksch, D.
    Clark, S. R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):