Dynamic properties of the one-dimensional Bose-Hubbard model

被引:82
|
作者
Ejima, S. [1 ]
Fehske, H. [1 ]
Gebhard, F. [2 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
[2] Univ Marburg, Dept Phys, D-35032 Marburg, Germany
关键词
SUPERFLUID-INSULATOR-TRANSITION; OPTICAL LATTICES; MOTT-INSULATOR; BOSONS; FLUID; STATE; GAS;
D O I
10.1209/0295-5075/93/30002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the density-matrix renormalization group method to investigate ground-state and dynamic properties of the one-dimensional Bose-Hubbard model, the effective model of ultracold bosonic atoms in an optical lattice. For fixed maximum site occupancy n(b) = 5, we calculate the phase boundaries between the Mott insulator and the "superfluid" phase for the lowest two Mott lobes. We extract the Tomonaga-Luttinger parameter from the density-density correlation function and determine accurately the critical interaction strength for the Mott transition. For both phases, we study the momentum distribution function in the homogeneous system, and the particle distribution and quasi-momentum distribution functions in a parabolic trap. With our zero-temperature method we determine the photoemission spectra in the Mott insulator and in the "superfluid" phase of the one-dimensional Bose-Hubbard model. In the insulator, the Mott gap separates the quasi-particle and quasi-hole dispersions. In the "superfluid" phase the spectral weight is concentrated around zero momentum. Copyright (C) EPLA, 2011
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The one-dimensional extended Bose-Hubbard model
    Ramesh V. Pai
    Rahul Pandit
    [J]. Journal of Chemical Sciences, 2003, 115 (5-6) : 721 - 726
  • [2] The one-dimensional extended Bose-Hubbard model
    Pai, RV
    Pandit, R
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 2003, 115 (5-6): : 721 - 726
  • [3] Superfluidity in the one-dimensional Bose-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    [J]. PHYSICAL REVIEW B, 2022, 105 (13)
  • [4] Phases of the one-dimensional Bose-Hubbard model
    Kühner, TD
    Monien, H
    [J]. PHYSICAL REVIEW B, 1998, 58 (22) : R14741 - R14744
  • [5] Topological pumping in the one-dimensional Bose-Hubbard model
    Rossini, Davide
    Gibertini, Marco
    Giovannetti, Vittorio
    Fazio, Rosario
    [J]. PHYSICAL REVIEW B, 2013, 87 (08):
  • [6] Soliton excitations of one-dimensional Bose-Hubbard model
    Xie Yuan-Dong
    [J]. ACTA PHYSICA SINICA, 2012, 61 (02)
  • [7] Reentrance and entanglement in the one-dimensional Bose-Hubbard model
    Pino, M.
    Prior, J.
    Somoza, A. M.
    Jaksch, D.
    Clark, S. R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [8] Dynamic freezing and defect suppression in the tilted one-dimensional Bose-Hubbard model
    Divakaran, U.
    Sengupta, K.
    [J]. PHYSICAL REVIEW B, 2014, 90 (18):
  • [9] Ground-state properties of the attractive one-dimensional Bose-Hubbard model
    Oelkers, Norman
    Links, Jon
    [J]. PHYSICAL REVIEW B, 2007, 75 (11)
  • [10] Multiband effects and the Bose-Hubbard model in one-dimensional lattices
    Xu, Wei
    Olshanii, Maxim
    Rigol, Marcos
    [J]. PHYSICAL REVIEW A, 2016, 94 (03)