Collisionless drag for a one-dimensional two-component Bose-Hubbard model

被引:11
|
作者
Contessi, Daniele [1 ]
Romito, Donato [2 ,3 ]
Rizzi, Matteo [4 ,5 ]
Recati, Alessio [1 ,2 ]
机构
[1] Univ Trento, Dipartimento Fis, I-38123 Povo, Italy
[2] INO CNR BEC Ctr, I-38123 Povo, Italy
[3] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[4] Forschungszentrum Julich, Peter Grunberg Inst PGI 8, Inst Quantum Control, D-52425 Julich, Germany
[5] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
关键词
Bose Hubbard model - Correlation function - Interspecies interactions - Kosterlitz-Thouless - Luttinger parameter - Network algorithms - Spin susceptibility - Superfluid density;
D O I
10.1103/PhysRevResearch.3.L022017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component one-dimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter K-S in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Dynamic freezing and defect suppression in the tilted one-dimensional Bose-Hubbard model
    Divakaran, U.
    Sengupta, K.
    [J]. PHYSICAL REVIEW B, 2014, 90 (18):
  • [42] Quasiperiodic Bose-Hubbard model and localization in one-dimensional cold atomic gases
    Roux, G.
    Barthel, T.
    McCulloch, I. P.
    Kollath, C.
    Schollwoeck, U.
    Giamarchi, T.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [43] Ground-state properties of the attractive one-dimensional Bose-Hubbard model
    Oelkers, Norman
    Links, Jon
    [J]. PHYSICAL REVIEW B, 2007, 75 (11)
  • [44] Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model
    Goldsborough, Andrew M.
    Roemer, Rudolf A.
    [J]. EPL, 2015, 111 (02)
  • [45] One-dimensional Bose-Hubbard model with local three-body interactions
    Ejima, Satoshi
    Lange, Florian
    Fehske, Holger
    Gebhard, Florian
    Muenster, Kevin Zu
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [46] Entanglement spectrum of one-dimensional extended Bose-Hubbard models
    Deng, Xiaolong
    Santos, Luis
    [J]. PHYSICAL REVIEW B, 2011, 84 (08)
  • [47] Dynamical correlation functions for the one-dimensional Bose-Hubbard insulator
    Muenster, Kevin Zu
    Gebhard, Florian
    Ejima, Satoshi
    Fehske, Holger
    [J]. PHYSICAL REVIEW A, 2014, 89 (06):
  • [48] Correlators in the one-dimensional two-component Bose and Fermi gases
    Izergin, AG
    Pronko, AG
    [J]. PHYSICS LETTERS A, 1997, 236 (5-6) : 445 - 454
  • [49] Correlators in the one-dimensional two-component Bose and Fermi gases
    Izergin, A.G.
    Pronko, A.G.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 236 (5-6): : 445 - 454
  • [50] Threshold for Chaos and Thermalization in the One-Dimensional Mean-Field Bose-Hubbard Model
    Cassidy, Amy C.
    Mason, Douglas
    Dunjko, Vanja
    Olshanii, Maxim
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (02)