A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network

被引:116
|
作者
Kan, Xiu [1 ,2 ]
Fan, Yixuan [1 ]
Fang, Zhijun [1 ]
Cao, Le [1 ]
Xiong, Neal N. [3 ]
Yang, Dan [1 ]
Li, Xuan [4 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[3] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
[4] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
IoT network security; Adaptive Particle Swarm Optimization; Convolutional Neural Network; Attack detection; QUANTITATIVE-ANALYSIS; SECURITY; MACHINE;
D O I
10.1016/j.ins.2021.03.060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of network security, it is of great significance to accurately detect various types of Internet of Things (IoT) network intrusion attacks which launched by the attacker controlled zombie hosts. In this paper, we propose a novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network (APSO-CNN). In particular, the PSO algorithm with change of inertia weight is used to adaptively optimize the structure parameters of one-dimensional CNN. The cross-entropy loss function value of the validation set, which is obtained from the first training of CNN, is taken as the fitness value of PSO. Especially, we define a new evaluation method that considers both the prediction probability assigned to each category and prediction label to compare the proposed APSO-CNN algorithm with CNN set parameters manually (R CNN). Meanwhile, the comprehensive performance of proposed APSO-CNN and other three well known algorithms are compared in the five traditional evaluation indicators and the accuracy statistical characteristics of 10 times independent experiments. The simulation results show that the multi-type IoT network intrusion attack detection task based on APSO-CNN algorithm is effective and reliable. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [31] Network Intrusion Detection Using Support Vector Machine Based on Particle Swarm Optimization
    Wang, Li
    Dong, Chunhua
    Hu, Jianping
    Li, Guodong
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 665 - 670
  • [32] Intrusion Detection Network Based on Fuzzy C-Means and Particle Swarm Optimization
    Zhang, Zhongxing
    Gu, Baoping
    PROCEEDINGS OF THE 6TH INTERNATIONAL ASIA CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION, VOL 2: INNOVATION AND PRACTICE OF INDUSTRIAL ENGINEERING AND MANAGMENT, 2016, : 111 - 119
  • [33] Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition
    Sharma, Reya
    Kaushik, Baijnath
    Gondhi, Naveen Kumar
    Tahir, Muhammad
    Rahmani, Mohammad Khalid Imam
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5855 - 5873
  • [34] Research on the Network Intrusion Detection System based on Modified Particle Swarm Optimization Algorithm
    Wang, Xuesong
    Feng, Guangzhan
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE AND TECHNOLOGY EDUCATION (ICSSTE 2016), 2016, 55 : 634 - 639
  • [35] Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
    Liu, Xian
    Wu, Ruiqi
    Wang, Rugang
    Zhou, Feng
    Chen, Zhaofeng
    Guo, Naihong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [36] Intrusion Detection Model for IoT Using Recurrent Kernel Convolutional Neural Network
    C. U. Om Kumar
    Suguna Marappan
    Bhavadharini Murugeshan
    P. Mercy Rajaselvi Beaulah
    Wireless Personal Communications, 2023, 129 : 783 - 812
  • [37] A Novel Hybrid Model Based on Convolutional Neural Network With Particle Swarm Optimization Algorithm for Classification of Cardiac Arrhythmias
    Banos, Fredy Santander
    Romero, Norberto Hernandez
    Mora, Juan Carlos Seck Tuoh
    Marin, Joselito Medina
    Vite, Irving Barragan
    Fuentes, Gustavo Erick Anaya
    IEEE ACCESS, 2023, 11 : 55515 - 55532
  • [38] RBF Neural Network Based on Particle Swarm Optimization
    Shao, Yuxiang
    Chen, Qing
    Jiang, Hong
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 169 - +
  • [39] A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
    Al-Turaiki, Isra
    Altwaijry, Najwa
    BIG DATA, 2021, 9 (03) : 233 - 252
  • [40] An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic
    Zhang, Xiaoxuan
    Ran, Jing
    Mi, Jize
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 456 - 460