A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network

被引:116
|
作者
Kan, Xiu [1 ,2 ]
Fan, Yixuan [1 ]
Fang, Zhijun [1 ]
Cao, Le [1 ]
Xiong, Neal N. [3 ]
Yang, Dan [1 ]
Li, Xuan [4 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[3] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
[4] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
IoT network security; Adaptive Particle Swarm Optimization; Convolutional Neural Network; Attack detection; QUANTITATIVE-ANALYSIS; SECURITY; MACHINE;
D O I
10.1016/j.ins.2021.03.060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of network security, it is of great significance to accurately detect various types of Internet of Things (IoT) network intrusion attacks which launched by the attacker controlled zombie hosts. In this paper, we propose a novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network (APSO-CNN). In particular, the PSO algorithm with change of inertia weight is used to adaptively optimize the structure parameters of one-dimensional CNN. The cross-entropy loss function value of the validation set, which is obtained from the first training of CNN, is taken as the fitness value of PSO. Especially, we define a new evaluation method that considers both the prediction probability assigned to each category and prediction label to compare the proposed APSO-CNN algorithm with CNN set parameters manually (R CNN). Meanwhile, the comprehensive performance of proposed APSO-CNN and other three well known algorithms are compared in the five traditional evaluation indicators and the accuracy statistical characteristics of 10 times independent experiments. The simulation results show that the multi-type IoT network intrusion attack detection task based on APSO-CNN algorithm is effective and reliable. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [11] Improving the Particle Swarm Algorithm and Optimizing the Network Intrusion Detection of Neural Network
    Yang, Xu
    Hui, Zhao
    PROCEEDINGS 2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND ENGINEERING APPLICATIONS ISDEA 2015, 2015, : 452 - 455
  • [12] Fuzzy min-max neural network and particle swarm optimization based intrusion detection system
    Azad, Chandrashekhar
    Jha, Vijay Kumar
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04): : 907 - 918
  • [13] Adaptive convolutional-LSTM neural network with NADAM optimization for intrusion detection in underwater IoT wireless sensor networks
    Arivumani, Samson
    Nagarajan, M.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [14] Intrusion Detection in IoT Systems Based on Deep Learning Using Convolutional Neural Network
    Pham Van Huong
    Le Duc Thuan
    Le Thi Hong Van
    Dang Viet Hung
    PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 448 - 453
  • [15] Novel flatness pattern recognition using neural network based on adaptive particle swarm optimization
    Xu Lin
    Sun Shu-fang
    Wang Jian-hui
    Fang Xiao-ke
    Gu Shu-sheng
    PROCEEDINGS OF 2005 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1 AND 2, 2005, : 550 - +
  • [16] A Novel Approach based on Lightweight Deep Neural Network for Network Intrusion Detection
    Zhao, Ruijie
    Li, Zhaojie
    Xue, Zhi
    Ohtsuki, Tomoaki
    Gui, Guan
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [17] Research on the Novel Computer Network Intrusion Detection Model based on Improved Particle Swarm Optimization Algorithm
    Fu, Juan
    Hu, Hai
    Wang, Leping
    2016 3RD INTERNATIONAL SYMPOSIUM ON ENGINEERING TECHNOLOGY, EDUCATION AND MANAGEMENT (ISETEM 2016), 2016, : 138 - 143
  • [18] Optimization of Intrusion Detection System Based on Improved Convolutional Neural Network Algorithm
    Pu, Xiaochuan
    Zhang, Yuanqiang
    Ruan, Qingqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [19] Network Intrusion Detection Technology Based on Convolutional Neural Network and BiGRU
    Cao, Bo
    Li, Chenghai
    Song, Yafei
    Fan, Xiaoshi
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [20] CNID: Research of Network Intrusion Detection Based on Convolutional Neural Network
    Liu, Guojie
    Zhang, Jianbiao
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020