Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars

被引:3
|
作者
Xu, Xiang [1 ]
Binkele, Peter [1 ]
Verestek, Wolfgang [1 ]
Schmauder, Siegfried [1 ]
机构
[1] Univ Stuttgart, Inst Mat Testing Mat Sci & Strength Mat, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
来源
MOLECULES | 2021年 / 26卷 / 09期
关键词
polycrystalline nanopillars; molecular dynamics method; creep mechanisms; dislocation creep; grain boundary sliding; deformation map; BOUNDARY DIFFUSION CREEP; PLASTIC BEHAVIOR; NI; DEFORMATION; METALS; MODEL; SIZE; AL;
D O I
10.3390/molecules26092606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby's experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] COMPUTER-SIMULATION OF HIGH-TEMPERATURE CREEP
    PATU, S
    ARSENAULT, RJ
    KRAMER, IR
    JOURNAL OF METALS, 1984, 36 (12): : 4 - 4
  • [32] HIGH-TEMPERATURE DIELECTRIC BEHAVIOR OF POLYCRYSTALLINE ZNO
    SEITZ, MA
    SOKOLY, TO
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1974, 121 (01) : 163 - 169
  • [33] HIGH-TEMPERATURE FATIGUE BEHAVIOR OF POLYCRYSTALLINE ALUMINA
    JAKUS, K
    SERVICE, T
    RITTER, JE
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1980, 63 (1-2) : 4 - 7
  • [34] DYNAMICS OF DISLOCATIONS IN HIGH-TEMPERATURE CREEP IN METALS
    CADEK, J
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1973, 32 (10): : 534 - 549
  • [35] HIGH-TEMPERATURE CREEP OF GOLD-NICKEL ALLOYS
    SELLARS, CM
    QUARRELL, AG
    JOURNAL OF THE INSTITUTE OF METALS, 1962, 90 (09): : 329 - &
  • [36] HIGH-TEMPERATURE CREEP-BEHAVIOR OF POLYCRYSTALLINE NI3AL(ZR,B)
    WOLFENSTINE, J
    KIM, HK
    EARTHMAN, JC
    SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (12): : 1823 - 1828
  • [37] CHANGES IN SUBSTRUCTURE OF NICKEL DURING HIGH-TEMPERATURE CREEP
    VOZNESENSKIY, VV
    ROZENBER.VM
    RUSSIAN METALLURGY-METALLY-USSR, 1970, (04): : 76 - +
  • [38] RETENTION OF STRUCTURE AFTER HIGH-TEMPERATURE CREEP OF NICKEL
    RICHARDSON, GJ
    SELLARS, CM
    TEGART, WJM
    JOURNAL OF THE INSTITUTE OF METALS, 1966, 94 (04): : 138 - +
  • [39] HIGH-TEMPERATURE CREEP BEHAVIOR OF STRONTIUM ZIRCONATE
    NEMETH, J
    YOUDELIS, WV
    PARR, JG
    AMERICAN CERAMIC SOCIETY BULLETIN, 1971, 50 (04): : 371 - &
  • [40] STRUCTURAL AND MECHANICAL ASPECTS OF HIGH-TEMPERATURE DEFORMATION OF POLYCRYSTALLINE NICKEL
    WIERZBINSKI, S
    KORBEL, A
    JONAS, JJ
    MATERIALS SCIENCE AND TECHNOLOGY, 1992, 8 (02) : 153 - 158