Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars

被引:3
|
作者
Xu, Xiang [1 ]
Binkele, Peter [1 ]
Verestek, Wolfgang [1 ]
Schmauder, Siegfried [1 ]
机构
[1] Univ Stuttgart, Inst Mat Testing Mat Sci & Strength Mat, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
来源
MOLECULES | 2021年 / 26卷 / 09期
关键词
polycrystalline nanopillars; molecular dynamics method; creep mechanisms; dislocation creep; grain boundary sliding; deformation map; BOUNDARY DIFFUSION CREEP; PLASTIC BEHAVIOR; NI; DEFORMATION; METALS; MODEL; SIZE; AL;
D O I
10.3390/molecules26092606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby's experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE CREEP OF NICKEL ALUMINIDE POWDER
    BARINOV, SM
    ZUBAREV, PV
    IVANOV, VS
    KRASULIN, YL
    RUSSIAN METALLURGY, 1986, (05): : 167 - 170
  • [22] CREEP-BEHAVIOR OF HIGH-TEMPERATURE SOLDERED JOINTS OF NICKEL-ALLOYS
    DRAUGELATES, U
    HANSEN, F
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1982, 33 (03): : 176 - 176
  • [23] High-Temperature Sliding Friction Behavior of Amorphous Carbon Films: Molecular Dynamics Simulation
    Shao, Wei
    Shi, Zhijun
    Rao, Lixiang
    Zhang, Silong
    Xing, Xiaolei
    Zhou, Yefei
    Yang, Qingxiang
    LANGMUIR, 2020, 36 (50) : 15319 - 15330
  • [24] Compression creep behavior of a polycrystalline graphite at high temperature
    Luo, Rong
    Qiao, Shengru
    Yang, Zheng
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 1994, 5 (03):
  • [25] HIGH-TEMPERATURE ADSORPTION OF NITROGEN ON A POLYCRYSTALLINE NICKEL SURFACE
    BOUGHABA, S
    AUVERT, G
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (01) : 138 - 142
  • [26] HIGH-TEMPERATURE CREEP IN POLYCRYSTALLINE AIN-SIC CERAMICS
    JOU, ZC
    KUO, SY
    VIRKAR, AV
    JOURNAL OF MATERIALS SCIENCE, 1986, 21 (09) : 3015 - 3018
  • [27] KINETICS AND MECHANISMS OF HIGH-TEMPERATURE CREEP IN POLYCRYSTALLINE ALUMINUM NITRIDE
    VASUDEV, A
    MORE, KL
    AILEYTRENT, KS
    DAVIS, RF
    JOURNAL OF MATERIALS RESEARCH, 1993, 8 (05) : 1101 - 1108
  • [28] CHANGE IN POLYCRYSTALLINE CORUNDUM MICROSTRUCTURE IN PROCESS OF HIGH-TEMPERATURE CREEP
    VISHNEVS.II
    TALYANSK.ND
    BOYARINA, IL
    DOKLADY AKADEMII NAUK SSSR, 1972, 202 (05): : 1046 - &
  • [29] THEORY OF ENHANCED HIGH-TEMPERATURE CYCLIC CREEP IN POLYCRYSTALLINE MATERIAL
    WEERTMAN, J
    GREEN, WV
    JOURNAL OF NUCLEAR MATERIALS, 1977, 68 (02) : 205 - 214
  • [30] The influence of anisotropic diffusion on the high-temperature creep of a polycrystalline aggregate
    Karato, Shun-ichiro
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2010, 183 (3-4) : 468 - 472