Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars

被引:3
|
作者
Xu, Xiang [1 ]
Binkele, Peter [1 ]
Verestek, Wolfgang [1 ]
Schmauder, Siegfried [1 ]
机构
[1] Univ Stuttgart, Inst Mat Testing Mat Sci & Strength Mat, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
来源
MOLECULES | 2021年 / 26卷 / 09期
关键词
polycrystalline nanopillars; molecular dynamics method; creep mechanisms; dislocation creep; grain boundary sliding; deformation map; BOUNDARY DIFFUSION CREEP; PLASTIC BEHAVIOR; NI; DEFORMATION; METALS; MODEL; SIZE; AL;
D O I
10.3390/molecules26092606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby's experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Initial Vacancy-Dependent High-Temperature Creep Behavior of Nanocrystalline Ni by Molecular Dynamics Simulation
    Cui, Yan
    Shao, Weidong
    Shi, Yeran
    Zhou, Qing
    COATINGS, 2024, 14 (01)
  • [2] HIGH-TEMPERATURE CREEP BEHAVIOR OF POLYCRYSTALLINE SRZRO3
    NEMETH, J
    PARR, JG
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1972, 55 (03) : 125 - &
  • [3] HIGH-TEMPERATURE CREEP BEHAVIOR OF POLYCRYSTALLINE YTTRIUM STABILIZED ZIRCONIA
    TALTY, PK
    FEHRENBACHER, LL
    WIMMER, JM
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (04): : 352 - 352
  • [4] HIGH-TEMPERATURE CREEP OF POLYCRYSTALLINE GRAPHITE
    GREEN, WV
    WEERTMAN, J
    ZUKAS, EG
    MATERIALS SCIENCE AND ENGINEERING, 1970, 6 (03): : 199 - &
  • [5] HIGH-TEMPERATURE CREEP OF POLYCRYSTALLINE CHROMIUM
    STEPHENS, JR
    KLOPP, WD
    JOURNAL OF THE LESS-COMMON METALS, 1972, 27 (01): : 87 - &
  • [6] ACTIVATION PARAMETERS OF HIGH-TEMPERATURE CREEP IN POLYCRYSTALLINE NICKEL AT AMBIENT AND HIGH-PRESSURES
    MEAGHER, S
    BORCH, RS
    GROZA, J
    MUKHERJEE, AK
    GREEN, HW
    ACTA METALLURGICA ET MATERIALIA, 1992, 40 (01): : 159 - 166
  • [7] Analysis of high-temperature creep deformation in a polycrystalline nickel-base superalloy
    Soula, A.
    Renollet, Y.
    Boivin, D.
    Pouchou, J. L.
    Locq, D.
    Caron, P.
    Brechet, Y.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 : 301 - 306
  • [8] HIGH-TEMPERATURE CREEP BEHAVIOR OF A HIGHLY-ORIENTED POLYCRYSTALLINE GRAPHITE
    ZUKAS, EG
    GREEN, WV
    CARBON, 1968, 6 (01) : 101 - &
  • [9] HIGH-TEMPERATURE CREEP OF FORSTERITE POLYCRYSTALLINE AGGREGATES
    RELANDEAU, C
    GEOPHYSICAL RESEARCH LETTERS, 1981, 8 (07) : 733 - 736
  • [10] HIGH-TEMPERATURE COMPRESSIVE CREEP OF POLYCRYSTALLINE MULLITE
    HYNES, AP
    DOREMUS, RH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (10) : 2469 - 2475