The Fibonacci Polynomials in Rings

被引:0
|
作者
Tasyurdu, Yasemin [1 ]
Deveci, Omur [2 ]
机构
[1] Erzincan Univ, Fac Sci & Art, Dept Math, TR-24000 Erzincan, Turkey
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Fibonacci Polynomials; Period; Ring; K-NACCI SEQUENCES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Fibonacci polynomials modulo m such that chi(2) = x + 1 and then we obtain miscellaneous properties of these sequences. Also, we extend the Fibonacci polynomials to the ring of complex numbers. We define the Fibonacci Polynomial-type orbits F-(a,b)(R)(x) = {x(i)} where R be a 2-generator ring and (a, b) is a generating pair of the ring R. Furthermore, we obtain the periods of the Fibonacci Polynomial-type orbits F(a,b)Rw(x) in finite 2-generator rings of order p(2).
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [1] FIBONACCI POLYNOMIALS
    GIUDICI, RE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05): : 592 - &
  • [2] Fibonacci polynomials
    Garsia, A.
    Ganzberger, G.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1285 - 1312
  • [3] On Chebyshev Polynomials, Fibonacci Polynomials, and Their Derivatives
    Li, Yang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] FIBONACCI AND LUCAS POLYNOMIALS
    DOMAN, BGS
    WILLIAMS, JK
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (NOV) : 385 - 387
  • [5] Matrices with Fibonacci polynomials
    Gauthier, N
    Gosselin, JR
    [J]. FIBONACCI QUARTERLY, 2003, 41 (02): : 191 - 192
  • [6] Supersymmetric Fibonacci polynomials
    Yamani, Hashim A.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [7] Identities with Fibonacci polynomials
    Seiffert, HJ
    [J]. FIBONACCI QUARTERLY, 2003, 41 (02): : 189 - 191
  • [8] Integrals of Fibonacci polynomials
    Furdui, Ovidiu
    [J]. FIBONACCI QUARTERLY, 2007, 45 (01): : 95 - 96
  • [9] On the Roots of Fibonacci Polynomials
    Birol, Furkan
    Koruoglu, Ozden
    [J]. FILOMAT, 2022, 36 (12) : 4087 - 4097
  • [10] Distance Fibonacci Polynomials
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    [J]. SYMMETRY-BASEL, 2020, 12 (09):