Distance Fibonacci Polynomials

被引:6
|
作者
Bednarz, Urszula [1 ]
Wolowiec-Musial, Malgorzata [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 09期
关键词
generalized Fibonacci polynomials; Pascal's triangle; generating function; matrix generator; Cassini formula; NUMBERS;
D O I
10.3390/sym12091540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new kind of generalized Fibonacci polynomials in the distance sense. We give a direct formula, a generating function and matrix generators for these polynomials. Moreover, we present a graph interpretation of these polynomials, their connections with Pascal's triangle and we prove some identities for them.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Distance Fibonacci Polynomials by Graph Methods
    Strzalka, Dominik
    Wolski, Slawomir
    Wloch, Andrzej
    [J]. SYMMETRY-BASEL, 2021, 13 (11):
  • [2] (2, k)-Distance Fibonacci Polynomials
    Brod, Dorota
    Wloch, Andrzej
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10
  • [3] Distance Fibonacci Polynomials-Part II
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    [J]. SYMMETRY-BASEL, 2021, 13 (09):
  • [4] FIBONACCI POLYNOMIALS
    GIUDICI, RE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05): : 592 - &
  • [5] Fibonacci polynomials
    Garsia, A.
    Ganzberger, G.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1285 - 1312
  • [6] On Chebyshev Polynomials, Fibonacci Polynomials, and Their Derivatives
    Li, Yang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [7] FIBONACCI AND LUCAS POLYNOMIALS
    DOMAN, BGS
    WILLIAMS, JK
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (NOV) : 385 - 387
  • [8] The Fibonacci Polynomials in Rings
    Tasyurdu, Yasemin
    Deveci, Omur
    [J]. ARS COMBINATORIA, 2017, 133 : 355 - 366
  • [9] Matrices with Fibonacci polynomials
    Gauthier, N
    Gosselin, JR
    [J]. FIBONACCI QUARTERLY, 2003, 41 (02): : 191 - 192
  • [10] Supersymmetric Fibonacci polynomials
    Yamani, Hashim A.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)