Distance Fibonacci Polynomials by Graph Methods

被引:2
|
作者
Strzalka, Dominik [1 ]
Wolski, Slawomir [2 ]
Wloch, Andrzej [2 ]
机构
[1] Rzeszow Univ Technol, Fac Elect & Comp Engn, Aleja Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
[2] Rzeszow Univ Technol, Fac Math & Appl Phys, Aleja Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
Fibonacci numbers; Fibonacci polynomials; matrix generators; Pascal's triangle; NUMBERS; SUMS;
D O I
10.3390/sym13112075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we introduce and study a new generalization of Fibonacci polynomials which generalize Fibonacci, Jacobsthal and Narayana numbers, simultaneously. We give a graph interpretation of these polynomials and we obtain a binomial formula for them. Moreover by modification of Pascal's triangle, which has a symmetric structure, we obtain matrices generated by coefficients of generalized Fibonacci polynomials. As a consequence, the direct formula for generalized Fibonacci polynomials was given. In addition, we determine matrix generators for generalized Fibonacci polynomials, using the symmetric matrix of initial conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Distance Fibonacci Polynomials
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [2] (2, k)-Distance Fibonacci Polynomials
    Brod, Dorota
    Wloch, Andrzej
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10
  • [3] Distance Fibonacci Polynomials-Part II
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    [J]. SYMMETRY-BASEL, 2021, 13 (09):
  • [4] FIBONACCI POLYNOMIALS
    GIUDICI, RE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05): : 592 - &
  • [5] Fibonacci polynomials
    Garsia, A.
    Ganzberger, G.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1285 - 1312
  • [6] On Chebyshev Polynomials, Fibonacci Polynomials, and Their Derivatives
    Li, Yang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [7] FIBONACCI AND LUCAS POLYNOMIALS
    DOMAN, BGS
    WILLIAMS, JK
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (NOV) : 385 - 387
  • [8] The Fibonacci Polynomials in Rings
    Tasyurdu, Yasemin
    Deveci, Omur
    [J]. ARS COMBINATORIA, 2017, 133 : 355 - 366
  • [9] Matrices with Fibonacci polynomials
    Gauthier, N
    Gosselin, JR
    [J]. FIBONACCI QUARTERLY, 2003, 41 (02): : 191 - 192
  • [10] Supersymmetric Fibonacci polynomials
    Yamani, Hashim A.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)