The Fibonacci Polynomials in Rings

被引:0
|
作者
Tasyurdu, Yasemin [1 ]
Deveci, Omur [2 ]
机构
[1] Erzincan Univ, Fac Sci & Art, Dept Math, TR-24000 Erzincan, Turkey
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Fibonacci Polynomials; Period; Ring; K-NACCI SEQUENCES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Fibonacci polynomials modulo m such that chi(2) = x + 1 and then we obtain miscellaneous properties of these sequences. Also, we extend the Fibonacci polynomials to the ring of complex numbers. We define the Fibonacci Polynomial-type orbits F-(a,b)(R)(x) = {x(i)} where R be a 2-generator ring and (a, b) is a generating pair of the ring R. Furthermore, we obtain the periods of the Fibonacci Polynomial-type orbits F(a,b)Rw(x) in finite 2-generator rings of order p(2).
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [31] On generalized Fibonacci and Lucas polynomials
    Nalli, Ayse
    Haukkanen, Pentti
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3179 - 3186
  • [32] Dynamics of the zeros of Fibonacci polynomials
    He, MX
    Simon, D
    Ricci, PE
    [J]. FIBONACCI QUARTERLY, 1997, 35 (02): : 160 - 168
  • [33] Sums of powers of Fibonacci polynomials
    Helmut Prodinger
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 567 - 570
  • [34] A characterization of the Chebyshev and Fibonacci polynomials
    Cuccoli M.
    Ricci P.E.
    [J]. Rendiconti del Circolo Matematico di Palermo, 1998, 47 (1) : 129 - 140
  • [35] q-fibonacci polynomials
    Cigler, J
    [J]. FIBONACCI QUARTERLY, 2003, 41 (01): : 31 - 40
  • [36] On Chebyshev polynomials and Fibonacci numbers
    Zhang, WP
    [J]. FIBONACCI QUARTERLY, 2002, 40 (05): : 424 - 428
  • [37] On the derivatives of bivariate Fibonacci polynomials
    Cakmak, Tuba
    Karaduman, Erdal
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 37 - 46
  • [38] Pell numbers and Fibonacci polynomials
    Seiffert, H. -J.
    Bruckman, Paul S.
    [J]. FIBONACCI QUARTERLY, 2006, 44 (02): : 189 - 191
  • [39] A study of harmonic Fibonacci polynomials associated With Bernoulli-F and Euler-Fibonacci polynomials
    Tuglu, Naim
    Kus, Semra
    Kizilates, Can
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [40] On Gauss Fibonacci polynomials, on Gauss Lucas polynomials and their applications
    Ozkan, Engin
    Tastan, Merve
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 952 - 960