Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders

被引:196
|
作者
Eckhardt, Bruno
Grossmann, Siegfried
Lohse, Detlef
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1017/S0022112007005629
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulent Taylor-Couette flow with arbitrary rotation frequencies omega(1), omega(2) of the two coaxial cylinders with radii r(1) < r(2) is analysed theoretically. The current J(omega), of the angular velocity omega(x, t) = u(phi)(r, phi, z, t)/r across the cylinder gap and and the excess energy dissipation rate E, due to the turbulent, convective fluctuations (the 'wind') are derived and their dependence on the control parameters analysed. The very close correspondence of Taylor-Couette flow with thermal Rayleigh-Benard convection is elaborated, using these basic quantities and the exact relations among them to calculate the torque as a function of the rotation frequencies and the radius ratio eta = r(1)/r(2) or the gap width d = r(2) - r(1) between the cylinders. A quantity or corresponding to the Prandtl number in Rayleigh-Benard flow can be introduced, sigma= ((1 + eta)/2)/root eta)(4). Taylor-Couette flow it characterizes the geometry, instead of material properties of the liquid as in Rayleigh-Benard flow. The analogue of the Rayleigh number is the Taylor number, defined as Ta proportional to (omega(1) - omega(2))(2) times a specific geometrical factor. The experimental data show no pure power law, but the exponent ce of the torque versus the rotation frequency omega(1) depends on the driving frequency omega(1). An explanation for the physical origin of the omega(1)-dependence of the measured local power-law exponents alpha(omega(1)) is put forward. Also, the dependence of the torque on the gap width eta is discussed and, in particular its strong increase for eta -> 1.
引用
收藏
页码:221 / 250
页数:30
相关论文
共 50 条
  • [41] Modeling of droplet dispersion in a turbulent Taylor-Couette flow
    Eskin, Dmitry
    Taylor, Shawn David
    Yang, Dingzheng
    CHEMICAL ENGINEERING SCIENCE, 2017, 161 : 36 - 47
  • [42] Localized modulation of rotating waves in Taylor-Couette flow
    Abshagen, J.
    von Stamm, J.
    Heise, M.
    Will, Ch.
    Pfister, G.
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [43] Direct numerical simulation of turbulent Taylor-Couette flow
    Dong, S.
    JOURNAL OF FLUID MECHANICS, 2007, 587 : 373 - 393
  • [44] Spirals vortices in Taylor-Couette flow with rotating endwalls
    Heise, M.
    Hochstrate, K.
    Abshagen, J.
    Pfister, G.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [45] Effect of Eccentricity of Rotating Cylinder on Taylor-Couette Flow
    Jeon, Dong Hyup
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2021, 45 (02) : 83 - 90
  • [46] Recent developments of turbulent emulsions in Taylor-Couette flow
    Yi, Lei
    Wang, Cheng
    Huisman, Sander G.
    Sun, Chao
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2243):
  • [47] Spontaneous layering in stratified turbulent Taylor-Couette flow
    Oglethorpe, R. L. F.
    Caulfield, C. P.
    Woods, Andrew W.
    JOURNAL OF FLUID MECHANICS, 2013, 721
  • [48] Taylor–Couette flow with independently rotating end plates
    J. Abshagen
    K.A. Cliffe
    J. Langenberg
    T. Mullin
    G. Pfister
    S.J. Tavener
    Theoretical and Computational Fluid Dynamics, 2004, 18 : 129 - 136
  • [49] Intermittent boundary layers and torque maxima in Taylor-Couette flow
    Brauckmann, Hannes J.
    Eckhardt, Bruno
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [50] Experimental investigation of torque hysteresis behaviour of Taylor-Couette Flow
    Gul, M.
    Elsinga, G. E.
    Westerweel, J.
    JOURNAL OF FLUID MECHANICS, 2018, 836 : 635 - 648