Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders

被引:196
|
作者
Eckhardt, Bruno
Grossmann, Siegfried
Lohse, Detlef
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1017/S0022112007005629
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulent Taylor-Couette flow with arbitrary rotation frequencies omega(1), omega(2) of the two coaxial cylinders with radii r(1) < r(2) is analysed theoretically. The current J(omega), of the angular velocity omega(x, t) = u(phi)(r, phi, z, t)/r across the cylinder gap and and the excess energy dissipation rate E, due to the turbulent, convective fluctuations (the 'wind') are derived and their dependence on the control parameters analysed. The very close correspondence of Taylor-Couette flow with thermal Rayleigh-Benard convection is elaborated, using these basic quantities and the exact relations among them to calculate the torque as a function of the rotation frequencies and the radius ratio eta = r(1)/r(2) or the gap width d = r(2) - r(1) between the cylinders. A quantity or corresponding to the Prandtl number in Rayleigh-Benard flow can be introduced, sigma= ((1 + eta)/2)/root eta)(4). Taylor-Couette flow it characterizes the geometry, instead of material properties of the liquid as in Rayleigh-Benard flow. The analogue of the Rayleigh number is the Taylor number, defined as Ta proportional to (omega(1) - omega(2))(2) times a specific geometrical factor. The experimental data show no pure power law, but the exponent ce of the torque versus the rotation frequency omega(1) depends on the driving frequency omega(1). An explanation for the physical origin of the omega(1)-dependence of the measured local power-law exponents alpha(omega(1)) is put forward. Also, the dependence of the torque on the gap width eta is discussed and, in particular its strong increase for eta -> 1.
引用
收藏
页码:221 / 250
页数:30
相关论文
共 50 条
  • [31] Controlling the number of vortices and torque in Taylor-Couette flow
    Wen, Jun
    Zhang, Wen-Yun
    Ren, Liu-Zhen
    Bao, Lu-Yao
    Dini, Daniele
    Xi, Heng-Dong
    Hu, Hai-Bao
    JOURNAL OF FLUID MECHANICS, 2020, 901
  • [32] Smooth and rough boundaries in turbulent Taylor-Couette flow
    van den Berg, TH
    Doering, CR
    Lohse, D
    Lathrop, DP
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [33] Bubbly drag reduction in turbulent Taylor-Couette flow
    Lohsel, Detlef
    van den Berg, Thomas H.
    van Gils, Dennis P. M.
    Lathrop, Daniel P.
    ADVANCES IN TURBULENCE XI, 2007, 117 : 416 - +
  • [34] Direct numerical simulation of turbulent Taylor-Couette flow
    Bilson, M.
    Bremhorst, K.
    JOURNAL OF FLUID MECHANICS, 2007, 579 : 227 - 270
  • [35] Flow regimes in a very wide-gap Taylor-Couette flow with counter-rotating cylinders
    Merbold, S.
    Hamede, M. H.
    Froitzheim, A.
    Egbers, C.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246):
  • [36] Direct numerical simulation of turbulent Taylor-Couette flow
    Pirro, Davide
    Quadrio, Maurizio
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2008, 27 (05) : 552 - 566
  • [37] Multiple states in highly turbulent Taylor-Couette flow
    Huisman, Sander G.
    van der Veen, Roeland C. A.
    Sun, Chao
    Lohse, Detlef
    NATURE COMMUNICATIONS, 2014, 5
  • [38] Velocity profiles in strongly turbulent Taylor-Couette flow
    Grossmann, Siegfried
    Lohse, Detlef
    Sun, Chao
    PHYSICS OF FLUIDS, 2014, 26 (02)
  • [39] Turbulent Taylor-Couette flow with stationary inner cylinder
    Ostilla-Monico, R.
    Verzicco, R.
    Lohse, D.
    JOURNAL OF FLUID MECHANICS, 2016, 799 : R1
  • [40] Direction reversal of a rotating wave in Taylor-Couette flow
    Abshagen, J.
    Heise, M.
    Hoffmann, Ch.
    Pfister, G.
    JOURNAL OF FLUID MECHANICS, 2008, 607 (199-208) : 199 - 208