Poincare-Cartan integral invariants of Birkhoffian systems

被引:0
|
作者
Guo, YX [1 ]
Shang, M
Luo, SK
机构
[1] Liaoning Univ, Dept Phys, Shenyang 110036, Peoples R China
[2] Beijing Inst Technol, Dept Appl Mech, Beijing 100081, Peoples R China
[3] Changsha Univ, Inst Math Mech & Math Phys, Changsha 410003, Peoples R China
关键词
Birkhoffian systems; symplectic structure; self-adjointness; Poincare-Cartan integral invariants;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on modem differential geometry, the symplectic structure of a Birkhoffian system which is an extension of conservative and nonconservative systems is analyzed. An integral invariant of Poincare-Cartan's type is constructed for Birkhoffian systems. Finally, one-dimensional damped vibration is taken as an illustrative example and an integral invariant of Poincare's type is found.
引用
收藏
页码:68 / 72
页数:5
相关论文
共 50 条
  • [21] The quantal Poincare-Cartan integral invariant for singular higher-order Lagrangian in field theories
    Zhang, Y
    Li, ZP
    EUROPEAN PHYSICAL JOURNAL C, 2005, 41 (02): : 257 - 263
  • [22] Poincare-Cartan class and deformation quantization of Kahler manifolds
    Omori, H
    Maeda, Y
    Miyazaki, N
    Yoshioka, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) : 207 - 230
  • [23] Speckle beams with nonzero vorticity and Poincare-Cartan invariant
    Savchenko, AY
    Zel'dovich, BY
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (07): : 1665 - 1671
  • [24] THE POINCARE-CARTAN FORMS OF ONE-DIMENSIONAL VARIATIONAL INTEGRALS
    Chrastinova, Veronika
    Tryhuk, Vaclav
    MATHEMATICA SLOVACA, 2020, 70 (06) : 1381 - 1412
  • [25] D-modules, contact valued calculus and Poincare-Cartan form
    Blanco, RJA
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (03) : 585 - 606
  • [26] The Hilbert-Caratheodory and Poincare-Cartan forms for higher-order multiple-integral variational problems
    Crampin, M
    Saunders, DJ
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (03): : 657 - 689
  • [27] GENERALIZED NOETHER THEOREM AND POINCARE-CARTAN INTEGRAL INVARIANT FOR SINGULAR HIGH-ORDER LAGRANGIAN IN FIELDS THEORIES
    LI, ZP
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (10): : 1212 - 1225
  • [28] Generalized noether theorem and poincare-cartan integral invariant for singular high-order lagrangian in fields theories
    Zi-Ping, Li
    Science in China Series A: Mathematics, Physics, Astronomy and Technological Sciences, 1993, 36 (10):
  • [29] A CONTRIBUTION TO THE GLOBAL FORMULATION OF THE HIGHER-ORDER POINCARE-CARTAN FORM
    DELEON, M
    RODRIGUES, PR
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (04) : 353 - 362
  • [30] Poincaré-Cartan Integral Variants and Invariants of Nonholonomic Constrained Systems
    Y. X. Guo
    M. Shang
    S. K. Luo
    F. X. Mei
    International Journal of Theoretical Physics, 2001, 40 : 1197 - 1205