Poincare-Cartan class and deformation quantization of Kahler manifolds

被引:9
|
作者
Omori, H [1 ]
Maeda, Y
Miyazaki, N
Yoshioka, A
机构
[1] Sci Univ Tokyo, Fac Sci & Technol, Dept Math, Noda, Chiba 278, Japan
[2] Keio Univ, Fac Sci & Technol, Dept Math, Yokohama, Kanagawa 223, Japan
[3] Sci Univ Tokyo, Fac Engn, Dept Math, Tokyo 162, Japan
关键词
D O I
10.1007/s002200050356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a complete invariant for Weyl manifolds, called a Poincare-Cartan class. Applying the constructions of the Weyl manifold to complex manifolds via the Poincare-Cartan class, we propose the notion of a noncommutative Kahler manifold. For a given Kahler manifold, the necessary and sufficient condition for a Weyl manifold to be a noncommutative Kahler manifold is given. In particular, there exists a noncommutative Kahler manifold for any Kahler manifold. We also construct the noncommutative version of the S-1-principal bundle over a quantizable Weyl manifold.
引用
收藏
页码:207 / 230
页数:24
相关论文
共 50 条
  • [1] Poincaré–Cartan Class and Deformation Quantization of Kähler Manifolds
    Hideki Omori
    Yoshiaki Maeda
    Naoya Miyazaki
    Akira Yoshioka
    Communications in Mathematical Physics, 1998, 194 : 207 - 230
  • [2] BRST INVARIANCE AND POINCARE-CARTAN FORMS
    FERRARIS, M
    FRANCAVIGLIA, M
    VOLOVICH, I
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (03): : 253 - 264
  • [3] The Poincare-Cartan form in superfield theory
    Monterde, Juan
    Masque, Jaime Munoz
    Vallejo, Jose A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (04) : 775 - 822
  • [4] On vectorial gerbes and Poincare-Cartan classes
    Miyazaki, N
    NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, : 291 - 300
  • [5] POINCARE-CARTAN INTEGRAL INVARIANT FOR CONSTRAINED SYSTEMS
    BENAVENT, F
    GOMIS, J
    ANNALS OF PHYSICS, 1979, 118 (02) : 476 - 489
  • [6] A universal formula for deformation quantization on Kahler manifolds
    Gammelgaard, Niels Leth
    ADVANCES IN MATHEMATICS, 2014, 259 : 766 - 783
  • [7] Fock Representations and Deformation Quantization of Kahler Manifolds
    Sako, Akifumi
    Umetsu, Hiroshi
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2769 - 2794
  • [8] Deformation quantization for almost-Kahler manifolds
    Schlichenmaier, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 49 - 54
  • [9] Poincare-Cartan integral invariants of Birkhoffian systems
    Guo, YX
    Shang, M
    Luo, SK
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (01) : 68 - 72
  • [10] VARIATIONAL CALCULUS AND POINCARE-CARTAN FORMALISM ON SUPERMANIFOLDS
    CIANCI, R
    FRANCAVIGLIA, M
    VOLOVICH, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03): : 723 - 734