High reflectivity ultraviolet distributed Bragg reflector based on AlGaN/AlGaN multilayer

被引:0
|
作者
Shimada, Ryoko [1 ]
Xie, Jinqiao [1 ]
Morkog, Hadis [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect Engn, 601 W Main St, Richmond, VA 23284 USA
来源
关键词
high reflectivity; crack-free; AlGaN; wide band gap semiconductor; distributed Bragg reflectors (DBRs); microcavity;
D O I
10.1117/12.707886
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AlGaN/AlGaN distributed Bragg reflectors (DBRs) designed for the ultraviolet spectral region have been attained. The crack-free structures were grown on c-plane sapphire by plasma assisted molecular beam epitaxy (NOE). To minimize the built-in strain in DBRs, a thin buffer layer was used directly on e-plane sapphire. A peak reflectivity of 95% at 381 nm with a 21 run stop band width was obtained at room temperature (RT) using a 32.5 pairs Al0.7Ga0.3N/Al0.15Ga0.85N DBR. With a driving force for DBRs and emitting regions in wide band gap semiconductor microcavities, such as those based on GaN and ZnO, is the quest for cavity polariton which is the coupled mode between the exciton and photon modes. Moreover, the exploitation of cavity polaritons could be expected in the course of the development of extremely low-threshold optoelectronics devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] MOCVD growth of high reflective GaN/AlGaN distributed Bragg reflectors
    Nakada, N
    Ishikawa, H
    Egawa, T
    Jimbo, T
    Umeno, M
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 (1-4 II) : 961 - 967
  • [32] High reflectivity AlGaN/GaN Bragg mirrors grown by MOCVD for microcavities applications.
    Moret, M
    Ruffenach, S
    Briot, O
    Gil, B
    Aulombard, RL
    NEW APPLICATIONS FOR WIDE-BANDGAP SEMICONDUCTORS, 2003, 764 : 233 - 238
  • [33] Development of High-Reflectivity and Antireflection Dielectric Multilayer Mirrors for AlGaN-Based Ultraviolet-B Laser Diodes and their Device Applications
    Yabutani, Ayumu
    Hasegawa, Ryota
    Kondo, Ryosuke
    Matsubara, Eri
    Imai, Daichi
    Iwayama, Sho
    Jin, Yoshito
    Matsumoto, Tatsuya
    Toramaru, Masamitsu
    Torii, Hironori
    Takeuchi, Tetsuya
    Kamiyama, Satoshi
    Miyake, Hideto
    Iwaya, Motoaki
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (16):
  • [34] Near white light emission from GaN based light emitting diode with GaN/AlGaN distributed Bragg reflector
    Wen, Feng
    Huang, Lirong
    Jiang, Bo
    Tong, Liangzhu
    Xu, Wei
    Liu, Deming
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2010, 13 (03) : 147 - 150
  • [35] AlGaN solar-blind avalanche photodiodes with AlInN/AlGaN distributed Bragg reflectors
    Yao, Chujun
    Ye, Xuanchao
    Sun, Rui
    Yang, Guofeng
    Wang, Jin
    Lu, Yanan
    Yan, Pengfei
    Cao, Jintao
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (06):
  • [36] AlGaN solar-blind avalanche photodiodes with AlInN/AlGaN distributed Bragg reflectors
    Chujun Yao
    Xuanchao Ye
    Rui Sun
    Guofeng Yang
    Jin Wang
    Yanan Lu
    Pengfei Yan
    Jintao Cao
    Applied Physics A, 2017, 123
  • [37] On the reflectivity spectrum of implanted AlGaAs distributed Bragg reflector
    Kuei, PY
    Hsieh, LZ
    Chang, LB
    Jeng, MJ
    Lin, RM
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (10): : 6319 - 6322
  • [38] High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
    Pacuski, W.
    Kruse, C.
    Figge, S.
    Hommel, D.
    APPLIED PHYSICS LETTERS, 2009, 94 (19)
  • [39] AlGaN-based Bragg reflectors
    Ambacher, O
    Arzberger, M
    Brunner, D
    Angerer, H
    Freudenberg, F
    Esser, N
    Wethkamp, T
    Wilmers, K
    Richter, W
    Stutzmann, M
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 1997, 2 (22): : U3 - U13
  • [40] Design and fabrication of double AlGaN/GaN distributed Bragg reflector stack mirror for the application of GaN-based optoelectronic devices
    Gaoqiang Deng
    Yuantao Zhang
    Pengchong Li
    Ye Yu
    Xu Han
    Liang Chen
    Long Yan
    Xin Dong
    Degang Zhao
    Guotong Du
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 3277 - 3282