Quantum algorithms and the Fourier transform

被引:104
|
作者
Jozsa, R [1 ]
机构
[1] Univ Plymouth, Sch Math & Stat, Plymouth PL4 8AA, Devon, England
关键词
quantum computation; quantum algorithms; Fourier transform; quantum complexity;
D O I
10.1098/rspa.1998.0163
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform. The general construction of the Fourier transform on an Abelian group is outlined and this provides a unified way of understanding the efficacy of the algorithms. Finally we describe an efficient quantum factoring algorithm based on a general formalism of Kitaev and contrast its structure to the ingredients of Shor's algorithm.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 50 条
  • [41] Semiclassical Fourier transform for quantum computation
    Griffiths, RB
    Niu, CS
    PHYSICAL REVIEW LETTERS, 1996, 76 (17) : 3228 - 3231
  • [42] The Fourier Transform on Quantum Euclidean Space
    Coulembier, Kevin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [43] Optical simulator of the quantum Fourier transform
    Nam, Y. S.
    Bluemel, R.
    EPL, 2016, 114 (02)
  • [44] Structural stability of the quantum Fourier transform
    Y. S. Nam
    R. Blümel
    Quantum Information Processing, 2015, 14 : 1179 - 1192
  • [45] A Fourier transform for the quantum Toda lattice
    Gus Lonergan
    Selecta Mathematica, 2018, 24 : 4577 - 4615
  • [46] The multiplier based on quantum Fourier transform
    AnQi Zhang
    XueMei Wang
    ShengMei Zhao
    CCF Transactions on High Performance Computing, 2020, 2 : 221 - 227
  • [47] Quantum Speedup for the Fast Fourier Transform?
    Monroe, Don
    COMMUNICATIONS OF THE ACM, 2023, 66 (11) : 8 - 10
  • [48] Fourier Transform Spectra of Quantum Dots
    Damian, V.
    Ardelean, I.
    Armaselu, Anca
    Apostol, D.
    ROMOPTO 2009: NINTH CONFERENCE ON OPTICS: MICRO- TO NANOPHOTONICS II, 2010, 7469
  • [49] The multiplier based on quantum Fourier transform
    Zhang, AnQi
    Wang, XueMei
    Zhao, ShengMei
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2020, 2 (03) : 221 - 227
  • [50] Structural stability of the quantum Fourier transform
    Nam, Y. S.
    Bluemel, R.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (04) : 1179 - 1192