Quantum algorithms and the Fourier transform

被引:104
|
作者
Jozsa, R [1 ]
机构
[1] Univ Plymouth, Sch Math & Stat, Plymouth PL4 8AA, Devon, England
关键词
quantum computation; quantum algorithms; Fourier transform; quantum complexity;
D O I
10.1098/rspa.1998.0163
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform. The general construction of the Fourier transform on an Abelian group is outlined and this provides a unified way of understanding the efficacy of the algorithms. Finally we describe an efficient quantum factoring algorithm based on a general formalism of Kitaev and contrast its structure to the ingredients of Shor's algorithm.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 50 条
  • [31] Optimized fast algorithms for the quaternionic Fourier transform
    Felsberg, M
    Sommer, G
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 1999, 1689 : 209 - 216
  • [32] Quantum Fourier transform in computational basis
    Zhou, S. S.
    Loke, T.
    Izaac, J. A.
    Wang, J. B.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (03)
  • [33] A Fourier transform for the quantum Toda lattice
    Lonergan, Gus
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4577 - 4615
  • [34] Blind deconvolution by iterative Fourier transform algorithms
    Takahashi, T
    Takajo, H
    Maki, H
    Dainty, JC
    17TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR SCIENCE AND NEW TECHNOLOGY, PTS 1 AND 2, 1996, 2778 : 517 - 518
  • [35] Circuit of Quantum Fractional Fourier Transform
    Zhao, Tieyu
    Chi, Yingying
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [36] Quantum Fourier transform in computational basis
    S. S. Zhou
    T. Loke
    J. A. Izaac
    J. B. Wang
    Quantum Information Processing, 2017, 16
  • [37] Robustness of quantum Fourier transform interferometry
    Opanchuk, Bogdan
    Rosales-Zarate, Laura
    Reid, Margaret D.
    Drummond, Peter D.
    OPTICS LETTERS, 2019, 44 (02) : 343 - 346
  • [38] A QUANTUM SPEEDUP FOR THE FAST FOURIER TRANSFORM
    Hsu, Jeremy
    IEEE SPECTRUM, 2021, 58 (01) : 6 - 7
  • [39] Quantum Fourier Transform with fiber optics
    Tomita, A
    NEC RESEARCH & DEVELOPMENT, 2003, 44 (03): : 282 - 284
  • [40] Quantum Weighted Fractional Fourier Transform
    Zhao, Tieyu
    Yang, Tianyu
    Chi, Yingying
    MATHEMATICS, 2022, 10 (11)