On the L1-norm Approximation of a Matrix by Another of Lower Rank

被引:0
|
作者
Tsagkarakis, Nicholas [1 ]
Markopoulos, Panos P. [2 ]
Pados, Dimitris A. [1 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
基金
美国国家科学基金会;
关键词
Low rank approximation; L-1-norm; principal component analysis (PCA); erroneous data; faulty measurements; machine learning; outlier resistance; subspace signal processing; uniform feature preservation; FACTORIZATION;
D O I
10.1109/ICMLA.2016.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past decade, there has been a growing documented effort to approximate a matrix by another of lower rank minimizing the L(1-)norm of the residual matrix. In this paper, we first show that the problem is NP-hard. Then, we introduce a theorem on the sparsity of the residual matrix. The theorem sets the foundation for a novel algorithm that outperforms all existing counterparts in the L-1-norm error minimization metric and exhibits high outlier resistance in comparison to usual L-2-norm error minimization in machine learning applications.
引用
收藏
页码:768 / 773
页数:6
相关论文
共 50 条
  • [31] Linearized alternating directions method for l1-norm inequality constrained l1-norm minimization
    Cao, Shuhan
    Xiao, Yunhai
    Zhu, Hong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 142 - 153
  • [32] A GREEDY SPARSE APPROXIMATION ALGORITHM BASED ON L1-NORM SELECTION RULES
    Ben Mhenni, Ramzi
    Bourguignon, Sebastien
    Idier, Jerome
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5390 - 5394
  • [33] Sparse Reconstruction Using Hyperbolic Tangent as Smooth l1-Norm Approximation
    Haider, Hassaan
    Shah, Jawad Ali
    Kadir, Kushsairy
    Khan, Najeeb
    [J]. COMPUTATION, 2023, 11 (01)
  • [34] MRPP TESTS IN L1-NORM
    TRACY, DS
    KHAN, KA
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 373 - 380
  • [35] L1-norm quantile regression
    Li, Youjuan
    Zhu, Ji
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 163 - 185
  • [36] Recovering shape and motion by a dynamic system for low-rank matrix approximation in L 1 norm
    Liu, Yiguang
    Cao, Liping
    Liu, Chunling
    Pu, Yifei
    Cheng, Hong
    [J]. VISUAL COMPUTER, 2013, 29 (05): : 421 - 431
  • [37] ALGORITHM FOR L1-NORM MINIMIZATION WITH APPLICATION TO NON-LINEAR L1-APPROXIMATION
    ELATTAR, RA
    VIDYASAGAR, M
    DUTTA, SRK
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) : 70 - 86
  • [38] The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition
    Markopoulos, Panos P.
    Chachlakis, Dimitris G.
    Papalexakis, Evangelos E.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (04) : 511 - 515
  • [39] l1-norm coherence of assistance
    Zhao, Ming-Jing
    Ma, Teng
    Quan, Quan
    Fan, Heng
    Pereira, Rajesh
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [40] The L1-norm of a trigonometric sum
    Éminyan, KM
    [J]. MATHEMATICAL NOTES, 2004, 76 (1-2) : 124 - 132