Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix

被引:17
|
作者
Gao, H. [1 ]
Zhang, T. [2 ]
Wu, Y. [1 ,3 ]
Wu, Y. [1 ,3 ]
Jiang, L. [4 ]
Zhan, J. [4 ]
Li, J. [1 ]
Yang, R. [4 ]
机构
[1] Chinese Acad Agr Sci, Inst Anim Sci, Beijing 100193, Peoples R China
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200030, Peoples R China
[4] Chinese Acad Fishery Sci, Res Ctr Aquat Biotechnol, Beijing 100141, Peoples R China
关键词
3 MULTITRAIT METHODS; COMPLEX TRAITS; CARCASS TRAITS; LEAST-SQUARES; LOCI; GENETICS; DISCRETE; MODELS;
D O I
10.1038/hdy.2014.57
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent 'super traits' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle.
引用
下载
收藏
页码:526 / 532
页数:7
相关论文
共 50 条
  • [41] Genome-wide Association Analysis for Multiple Continuous Secondary Phenotypes
    Schifano, Elizabeth D.
    Li, Lin
    Christiani, David C.
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 92 (05) : 744 - 759
  • [42] Genome-wide association analysis in a German multiple sclerosis cohort
    Andlauer, T. F. M.
    Buck, D.
    Hemmer, B.
    Mueller-Myhsok, B.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 144 - 144
  • [43] Genome-wide pathway analysis of a genome-wide association study on psoriasis and Behcet's disease
    Lee, Young Ho
    Choi, Sung Jae
    Ji, Jong Dae
    Song, Gwan Gyu
    MOLECULAR BIOLOGY REPORTS, 2012, 39 (05) : 5953 - 5959
  • [44] Accounting for multiple comparisons in a genome-wide association study (GWAS)
    Johnson, Randall C.
    Nelson, George W.
    Troyer, Jennifer L.
    Lautenberger, James A.
    Kessing, Bailey D.
    Winkler, Cheryl A.
    O'Brien, Stephen J.
    BMC GENOMICS, 2010, 11
  • [45] Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
    Cappa, Eduardo P.
    Chen, Charles
    Klutsch, Jennifer G.
    Sebastian-Azcona, Jaime
    Ratcliffe, Blaise
    Wei, Xiaojing
    Da Ros, Letitia
    Ullah, Aziz
    Liu, Yang
    Benowicz, Andy
    Sadoway, Shane
    Mansfield, Shawn D.
    Erbilgin, Nadir
    Thomas, Barb R.
    El-Kassaby, Yousry A.
    BMC GENOMICS, 2022, 23 (01)
  • [46] Accounting for multiple comparisons in a genome-wide association study (GWAS)
    Randall C Johnson
    George W Nelson
    Jennifer L Troyer
    James A Lautenberger
    Bailey D Kessing
    Cheryl A Winkler
    Stephen J O'Brien
    BMC Genomics, 11
  • [47] Genome-wide pathway analysis of a genome-wide association study on psoriasis and Behcet’s disease
    Young Ho Lee
    Sung Jae Choi
    Jong Dae Ji
    Gwan Gyu Song
    Molecular Biology Reports, 2012, 39 : 5953 - 5959
  • [48] First genome-wide association study in multiple system atrophy
    Sailer, A.
    MOVEMENT DISORDERS, 2012, 27 : S467 - S467
  • [49] Genome-wide association study (GWAS), quantitative trait analyses and population structure
    Yoo, Hee Jeong
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2011, 20 (01) : S80 - S80
  • [50] A genome-wide association study identifies protein quantitative trait loci (pQTLs)
    Melzer, David
    Perry, John R. B.
    Hernandez, Dena
    Corsi, Anna-Maria
    Stevens, Kara
    Rafferty, Ian
    Lauretani, Fulvio
    Murray, Anna
    Gibbs, J. Raphael
    Paolisso, Giuseppe
    Rafiq, Sajjad
    Simon-Sanchez, Javier
    Lango, Hana
    Scholz, Sonja
    Weedon, Michael N.
    Arepalli, Sampath
    Rice, Neil
    Washecka, Nicole
    Hurst, Alison
    Britton, Angela
    Henley, William
    van de Leemput, Joyce
    Li, Rongling
    Newman, Anne B.
    Tranah, Greg
    Harris, Tamara
    Panicker, Vijay
    Dayan, Colin
    Bennett, Amanda
    McCarthy, Mark I.
    Ruokonen, Aimo
    Jarvelin, Marjo-Riitta
    Guralnik, Jack
    Bandinelli, Stefania
    Frayling, Timothy M.
    Singleton, Andrew
    Ferrucci, Luigi
    PLOS GENETICS, 2008, 4 (05)