Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix

被引:17
|
作者
Gao, H. [1 ]
Zhang, T. [2 ]
Wu, Y. [1 ,3 ]
Wu, Y. [1 ,3 ]
Jiang, L. [4 ]
Zhan, J. [4 ]
Li, J. [1 ]
Yang, R. [4 ]
机构
[1] Chinese Acad Agr Sci, Inst Anim Sci, Beijing 100193, Peoples R China
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200030, Peoples R China
[4] Chinese Acad Fishery Sci, Res Ctr Aquat Biotechnol, Beijing 100141, Peoples R China
关键词
3 MULTITRAIT METHODS; COMPLEX TRAITS; CARCASS TRAITS; LEAST-SQUARES; LOCI; GENETICS; DISCRETE; MODELS;
D O I
10.1038/hdy.2014.57
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Given the drawbacks of implementing multivariate analysis for mapping multiple traits in genome-wide association study (GWAS), principal component analysis (PCA) has been widely used to generate independent 'super traits' from the original multivariate phenotypic traits for the univariate analysis. However, parameter estimates in this framework may not be the same as those from the joint analysis of all traits, leading to spurious linkage results. In this paper, we propose to perform the PCA for residual covariance matrix instead of the phenotypical covariance matrix, based on which multiple traits are transformed to a group of pseudo principal components. The PCA for residual covariance matrix allows analyzing each pseudo principal component separately. In addition, all parameter estimates are equivalent to those obtained from the joint multivariate analysis under a linear transformation. However, a fast least absolute shrinkage and selection operator (LASSO) for estimating the sparse oversaturated genetic model greatly reduces the computational costs of this procedure. Extensive simulations show statistical and computational efficiencies of the proposed method. We illustrate this method in a GWAS for 20 slaughtering traits and meat quality traits in beef cattle.
引用
下载
收藏
页码:526 / 532
页数:7
相关论文
共 50 条
  • [21] Identification of genetic factors controlling phosphorus utilization efficiency in wheat by genome-wide association study with principal component analysis
    Bin Safdar, Luqman
    Umer, Muhammad Jawad
    Almas, Fakhrah
    Uddin, Siraj
    Safdar, Qurra-tul-Ain
    Blighe, Kevin
    Quraishi, Umar Masood
    GENE, 2021, 768
  • [22] Sparse Principal Component Analysis for Identifying Ancestry-Informative Markers in Genome-Wide Association Studies
    Lee, Seokho
    Epstein, Michael P.
    Duncan, Richard
    Lin, Xihong
    GENETIC EPIDEMIOLOGY, 2012, 36 (04) : 293 - 302
  • [23] Multi-trait analysis for genome-wide association study of five psychiatric disorders
    Yulu Wu
    Hongbao Cao
    Ancha Baranova
    Hailiang Huang
    Sheng Li
    Lei Cai
    Shuquan Rao
    Minhan Dai
    Min Xie
    Yikai Dou
    Qinjian Hao
    Ling Zhu
    Xiangrong Zhang
    Yin Yao
    Fuquan Zhang
    Mingqing Xu
    Qiang Wang
    Translational Psychiatry, 10
  • [24] Principal component analysis of canine hip dysplasia phenotypes and their statistical power for genome-wide association mapping
    Duan, Faping
    Ogden, Daniel
    Xu, Ling
    Liu, Kang
    Lust, George
    Sandler, Jody
    Dykes, Nathan L.
    Zhu, Lan
    Harris, Steven
    Jones, Paul
    Todhunter, Rory J.
    Zhang, Zhiwu
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (02) : 235 - 251
  • [25] Multi-trait analysis for genome-wide association study of five psychiatric disorders
    Wu, Yulu
    Cao, Hongbao
    Baranova, Ancha
    Huang, Hailiang
    Li, Sheng
    Cai, Lei
    Rao, Shuquan
    Dai, Minhan
    Xie, Min
    Dou, Yikai
    Hao, Qinjian
    Zhu, Ling
    Zhang, Xiangrong
    Yao, Yin
    Xu, Mingqing
    Wang, Qiang
    Zhang, Fuquan
    TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
  • [26] A genome-wide association study in multiple system atrophy
    Sailer, Anna
    Scholz, Sonja W.
    Nalls, Michael A.
    Schulte, Claudia
    Federoff, Monica
    Price, T. Ryan
    Lees, Andrew
    Ross, Owen A.
    Dickson, Dennis W.
    Mok, Kin
    Mencacci, Niccolo E.
    Schottlaender, Lucia
    Chelban, Viorica
    Ling, Helen
    O'Sullivan, Sean S.
    Wood, Nicholas W.
    Traynor, Bryan J.
    Ferrucci, Luigi
    Federoff, Howard J.
    Mhyre, Timothy R.
    Morris, Huw R.
    Deuschl, Gunther
    Quinn, Niall
    Widner, Hakan
    Albanese, Alberto
    Infante, Jon
    Bhatia, Kailash P.
    Poewe, Werner
    Oertel, Wolfgang
    Hoglinger, Gunter U.
    Wullner, Ullrich
    Goldwurm, Stefano
    Pellecchia, Maria Teresa
    Ferreira, Joaquim
    Tolosa, Eduardo
    Bloem, Bastiaan R.
    Rascol, Olivier
    Meissner, Wassilios G.
    Hardy, John A.
    Revesz, Tamas
    Holton, Janice L.
    Gasser, Thomas
    Wenning, Gregor K.
    Singleton, Andrew B.
    Houlden, Henry
    NEUROLOGY, 2016, 87 (15) : 1591 - 1598
  • [27] A genome-wide association study in progressive multiple sclerosis
    Martinelli-Boneschi, Filippo
    Esposito, Federica
    Brambilla, Paola
    Lindstrom, Eva
    Lavorgna, Giovanni
    Stankovich, Jim
    Rodegher, Mariaemma
    Capra, Ruggero
    Ghezzi, Angelo
    Coniglio, Gabriella
    Colombo, Bruno
    Sorosina, Melissa
    Martinelli, Vittorio
    Booth, David
    Oturai, Annette Bang
    Stewart, Graeme
    Harbo, Hanne F.
    Kilpatrick, Trevor John
    Hillert, Jan
    Rubio, Justin P.
    Abderrahim, Hadi
    Wojcik, Jerome
    Comi, Giancarlo
    MULTIPLE SCLEROSIS JOURNAL, 2012, 18 (10) : 1384 - 1394
  • [28] Genome-wide association study of severity in multiple sclerosis
    Genes & Immunity, 2011, 12 : 615 - 625
  • [29] Genome-wide association study of severity in multiple sclerosis
    Briggs, Farren B. S.
    Shao, Xiaorong
    Goldstein, Benjamin A.
    Oksenberg, Jorge R.
    Barcellos, Lisa F.
    De Jager, Philip L.
    GENES AND IMMUNITY, 2011, 12 (08) : 615 - 625
  • [30] Statistical analysis for genome-wide association study
    Ping Zeng
    Yang Zhao
    Cheng Qian
    Liwei Zhang
    Ruyang Zhang
    Jianwei Gou
    Jin Liu
    Liya Liu
    Feng Chen
    The Journal of Biomedical Research, 2015, 29 (04) : 285 - 297