Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection

被引:9
|
作者
Daoudi, Nadia [1 ]
Allix, Kevin [1 ]
Bissyande, Tegawende F. [1 ]
Klein, Jacques [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 29 Ave JF Kennedy, L-1855 Luxembourg, Luxembourg
关键词
Android malware dection; Machine learning; Reproducibility; Replicability; CONTEXT-AWARE; PERMISSION; SEMANTICS;
D O I
10.1007/s10664-021-09955-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A well-known curse of computer security research is that it often produces systems that, while technically sound, fail operationally. To overcome this curse, the community generally seeks to assess proposed systems under a variety of settings in order to make explicit every potential bias. In this respect, recently, research achievements on machine learning based malware detection are being considered for thorough evaluation by the community. Such an effort of comprehensive evaluation supposes first and foremost the possibility to perform an independent reproduction study in order to sharpen evaluations presented by approaches' authors. The question Can published approaches actually be reproduced? thus becomes paramount despite the little interest such mundane and practical aspects seem to attract in the malware detection field. In this paper, we attempt a complete reproduction of five Android Malware Detectors from the literature and discuss to what extent they are "reproducible". Notably, we provide insights on the implications around the guesswork that may be required to finalise a working implementation. Finally, we discuss how barriers to reproduction could be lifted, and how the malware detection field would benefit from stronger reproducibility standards-like many various fields already have.
引用
收藏
页数:53
相关论文
共 50 条
  • [1] Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection
    Nadia Daoudi
    Kevin Allix
    Tegawendé F. Bissyandé
    Jacques Klein
    [J]. Empirical Software Engineering, 2021, 26
  • [2] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    [J]. 2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [3] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    [J]. GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [4] Study on Android Hybrid Malware Detection Based on Machine Learning
    Kuo, Wen-Chung
    Liu, Tsung-Ping
    Wang, Chun-Cheng
    [J]. 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 31 - 35
  • [5] A Review of Android Malware Detection Approaches Based on Machine Learning
    Liu, Kaijun
    Xu, Shengwei
    Xu, Guoai
    Zhang, Miao
    Sun, Dawei
    Liu, Haifeng
    [J]. IEEE ACCESS, 2020, 8 (08): : 124579 - 124607
  • [6] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [7] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    [J]. 2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [8] A Survey of Android Malware Static Detection Technology Based on Machine Learning
    Wu, Qing
    Zhu, Xueling
    Liu, Bo
    [J]. MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [9] Evaluation of Tree Based Machine Learning Classifiers for Android Malware Detection
    Rana, Md. Shohel
    Rahman, Sheikh Shah Mohammad Motiur
    Sung, Andrew H.
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II, 2018, 11056 : 377 - 385
  • [10] On the Evaluation of the Machine Learning Based Hybrid Approach for Android Malware Detection
    Ratyal, Natasha Javed
    Khadam, Maryam
    Aleem, Muhammad
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 100 - 107