Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm

被引:15
|
作者
Yang, Fan [1 ]
Yue, Zhufeng [1 ]
机构
[1] Northwestern Polytech Univ, Dept Engn Mech, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural network model; Genetic algorithm; Weibull distribution; Optimization algorithm; Maximum likelihood method; Grey model; REGRESSION-MODELS; PARAMETERS;
D O I
10.1016/j.amc.2014.09.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-parameter Weibull distribution is widely employed as a model in reliability and lifetime studies due to its good fit to data. It is important to estimate the unknown parameters exactly for modeling. There are many methods to estimate the parameters of three-parameter Weibull distribution and the kernel density estimation method is one of them. The smoothing parameter has a significant influence on the estimation accuracy. In this paper, the neural network and genetic algorithm were used to get the best smoothing parameter and the result was compared with other methods. The Monte Carlo simulations were carried out to show the feasibility of our approach for estimation of three-parameter Weibull distribution. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:803 / 814
页数:12
相关论文
共 50 条
  • [21] Statistical inference about the location parameter of the three-parameter Weibull distribution
    Chen, Dongming
    Chen, Zhenmin
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (03) : 215 - 225
  • [22] Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples
    Ng, H. K. T.
    Luo, L.
    Hu, Y.
    Duan, F.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1661 - 1678
  • [23] Least squares fitting the three-parameter inverse Weibull density
    Marusic, Miljenko
    Markovic, Darija
    Jukic, Dragan
    [J]. MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 539 - 553
  • [24] New estimation method of wind power density with three-parameter Weibull distribution: A case on Central Inner Mongolia suburbs
    Wang, Wenxin
    Chen, Kexin
    Bai, Yang
    Chen, Yu
    Wang, Jianwen
    [J]. WIND ENERGY, 2022, 25 (02) : 368 - 386
  • [25] A consistent parameter estimation in the three-parameter lognormal distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2071 - 2086
  • [26] Parameter estimation of three-parameter Weibull probability model based on outlier detection
    Zhang, Hang
    Gao, Zhefeng
    Du, Chenran
    Bi, Shansong
    Fang, Yanyan
    Yun, Fengling
    Fang, Sheng
    Yu, Zhanglong
    Cui, Yi
    Shen, Xueling
    [J]. RSC ADVANCES, 2022, 12 (53) : 34154 - 34164
  • [27] Probabilistic analysis of glass elements with three-parameter Weibull distribution
    Ramos, Alberto
    Muniz-Calvente, Miguel
    Fernandez, Pelayo
    Fernandez Canteli, Alfonso
    Jesus Lamela, Maria
    [J]. BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2015, 54 (04): : 153 - 158
  • [28] Advanced Algorithm for Maximum Likelihood Estimation of Three Parameter Weibull Distribution
    Yang Li
    Wang Dong
    Gao Yanli
    Liu Lingshun
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 321 - 324
  • [29] Estimation of three-parameter exponentiated-Weibull distribution under type-II censoring
    Singh, U
    Gupta, PK
    Upadhyay, SK
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (02) : 350 - 372
  • [30] Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution
    Luceno, Alberto
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (10) : 941 - 949