Global well-posedness for a fifth-order shallow water equation in Sobolev spaces

被引:13
|
作者
Yang, Xingyu [1 ]
Li, Yongsheng [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Shallow water equation; Global well-posedness; 1-method; Almost conservation law; Bilinear estimates; CAUCHY-PROBLEM; WEAK SOLUTIONS;
D O I
10.1016/j.jde.2010.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy problem of a fifth-order shallow water equation partial derivative(t)u - partial derivative(2)(x)partial derivative(t)u + partial derivative(3)(x)u + 3u partial derivative(x)u - 2 partial derivative(x)u partial derivative(2)(x)u - u partial derivative(3)(x)u - partial derivative(5)(x)u = 0 is shown to be globally well-posed in Sobolev spaces H-s(R) for s > (6 root 10 - 17)/4. The proof relies on the 1-method developed by Colliander, Keel, Staffilani. Takaoka and Tao. For this equation lacks scaling invariance, we reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data. We prove the almost conservation law, and combine it with the local result to obtain the global well-posedness. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1458 / 1472
页数:15
相关论文
共 50 条
  • [11] Global well-posedness for the fifth-order Kadomtsev-Petviashvili II equation in anisotropic Gevrey spaces
    Boukarou, Aissa
    da Silva, Daniel Oliveira
    Guerbati, Kaddour
    Zennir, Khaled
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (02) : 101 - 112
  • [12] WELL-POSEDNESS FOR THE FIFTH-ORDER KDV EQUATION IN THE ENERGY SPACE
    Kenig, Carlos E.
    Pilod, Didier
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (04) : 2551 - 2612
  • [13] Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces
    Aissa Boukarou
    Kaddour Guerbati
    Khaled Zennir
    [J]. Monatshefte für Mathematik, 2020, 193 : 763 - 782
  • [14] WELL-POSEDNESS AND ILL-POSEDNESS OF THE FIFTH-ORDER MODIFIED KDV EQUATION
    Kwon, Soonsik
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [15] Global Well-Posedness for the Fifth-Order KdV Equation in H-1 (R)
    Bringmann, Bjoern
    Killip, Rowan
    Visan, Monica
    [J]. ANNALS OF PDE, 2021, 7 (02)
  • [16] Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey-Bourgain spaces
    Boukarou, Aissa
    Guerbati, Kaddour
    Zennir, Khaled
    [J]. MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 763 - 782
  • [17] On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation
    Carvajal, X.
    Panthee, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 688 - 702
  • [18] WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES
    Alexandre, R.
    Wang, Y. -G.
    Xu, C. -J.
    Yang, T.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) : 745 - 784
  • [19] Well-Posedness for the Fifth Order KdV Equation
    Kato, Takamori
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (01): : 17 - 53
  • [20] Well-posedness of the fifth order Kadomtsev-Petviashvili I equation in anisotropic Sobolev spaces with nonnegative indices
    Li, Junfeng
    Xiao, Jie
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (04): : 338 - 352