Well-Posedness for the Fifth Order KdV Equation

被引:11
|
作者
Kato, Takamori [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2012年 / 55卷 / 01期
关键词
Fifth order KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm method; Low regula; CAUCHY-PROBLEM; BENJAMIN-ONO;
D O I
10.1619/fesi.55.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the fifth order KdV equation with low regularity data. We cannot apply the iteration argument to this problem when initial data. is given in the Sobolev space H-s for any s epsilon R. So we give initial data in H-s,H- (a) = H-s boolean AND H-a with a <= min {s, 0}. Then we recover more derivatives of the nonlinear term to be able to use the iteration method. Therefore we obtain the local well-posedness in H-s,H- a in the case s >= max{-1/4, -2a - 2}, -3/2 < a <= -1/4 and (s, a) not equal (-1/4, -7/8). Moreover, we obtain the ill-posedness in some sense when s < max{-1/4, -2a - 2}, a <= -3/2 or a > -1/4. The main tool is a variant of the Fourier restriction norm method, which is based on Kishimoto's work (2009).
引用
收藏
页码:17 / 53
页数:37
相关论文
共 50 条